Scientific publications

The scientific production of LUMES for the period 2018 – 2022 stands out across several key parameters, underscoring its impact and relevance within the academic community. With a total of 201 scientific publications in peer-reviewed journals, LUMES has firmly established its position in the realm of research. Among these publications, 35, equivalent to 17.9%, rank within the top 10% of the most cited articles, highlighting the significant influence of their work.

Furthermore, it is noteworthy that 74 publications, representing 37.6%, are positioned in the top 10% of journals according to the SJR (Scimago Journal Rank) indicator, emphasizing the quality and recognition of the platforms where LUMES chooses to disseminate its research.

A notable aspect of LUMES’ scientific production is its emphasis on international collaboration, with an impressive 70.7% of publications being co-authored in collaboration with researchers from around the globe. This figure underscores the global connection and international impact of LUMES’ contributions to scientific knowledge.

Regarding the magnitude of influence, there are a total of 876 authors and 3534 citations, indicating the continuous diffusion and recognition of the research conducted by the LUMES team. Each publication averages 17.6 citations, reflecting the consistent resonance and relevance of their work in the scientific community.

Additionally, considering the field-weighted impact, LUMES’ scientific production is reinforced by an average of 1.16 Field-Weighted Citation Impact per publication. This suggests that LUMES’ research is not only frequently cited but also has a substantial impact within their respective fields.

Finally, in assessing the visibility of their publications, it is observed that each article receives an average of 29.6 views, according to Scopus data. This indicator is further enhanced by an average of 1.27 Field-Weighted Views Impact, highlighting the significant attention their research garners within the academic community and beyond. Collectively, these parameters demonstrate the excellence and international projection of LUMES’ scientific production.

Key metrics and statistics of the publications

Most relevant scientific publications

Rego, L., Dorney, K. M., Brooks, N. J., Nguyen, Q. L., Liao, C.-T., San Román, J., Couch, D. E., Liu, A., Pisanty, E., Lewenstein, M., Plaja, L., Kapteyn, H. C., Murnane, M. M., & Hernández-García, C. (2019). Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 364(6447), eaaw9486. https://doi.org/10.1126/science.aaw9486
 
Silva, F., Alonso, B., Holgado, W., Romero, R., Román, J. S., Jarque, E. C., Koop, H., Pervak, V., Crespo, H., & Sola, Í. J. (2018). Strategies for achieving intense single-cycle pulses with in-line post-compression setups. Optics Letters, 43(2), 337. https://doi.org/10.1364/OL.43.000337
 
Caridad, J. M., Calogero, G., Pedrinazzi, P., Santos, J. E., Impellizzeri, A., Gunst, T., Booth, T. J., Sordan, R., Bøggild, P., & Brandbyge, M. (2018). A Graphene-Edge Ferroelectric Molecular Switch. Nano Letters, 18(8), 4675-4683. https://doi.org/10.1021/acs.nanolett.8b00797
 
Dorney, K. M., Rego, L., Brooks, N. J., San Román, J., Liao, C.-T., Ellis, J. L., Zusin, D., Gentry, C., Nguyen, Q. L., Shaw, J. M., Picón, A., Plaja, L., Kapteyn, H. C., Murnane, M. M., & Hernández-García, C. (2019). Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation. Nature Photonics, 13(2), 123-130. https://doi.org/10.1038/s41566-018-0304-3
 
Jessen, B. S., Gammelgaard, L., Thomsen, M. R., Mackenzie, D. M. A., Thomsen, J. D., Caridad, J. M., Duegaard, E., Watanabe, K., Taniguchi, T., Booth, T. J., Pedersen, T. G., Jauho, A.-P., & Bøggild, P. (2019). Lithographic band structure engineering of graphene. Nature Nanotechnology, 14(4), 340-346. https://doi.org/10.1038/s41565-019-0376-3
 
Salgado-Remacha, F. J., Alonso, B., Crespo, H., Cojocaru, C., Trull, J., Romero, R., López-Ripa, M., Guerreiro, P. T., Silva, F., Miranda, M., L’Huillier, A., Arnold, C. L., & Sola, Í. J. (2020). Single-shot d-scan technique for ultrashort laser pulse characterization using transverse second-harmonic generation in random nonlinear crystals. Optics Letters, 45(14), 3925. https://doi.org/10.1364/OL.397033
 
Alonso, B., Lopez-Quintas, I., Holgado, W., Drevinskas, R., Kazansky, P. G., Hernández-García, C., & Sola, Í. J. (2020). Complete spatiotemporal and polarization characterization of ultrafast vector beams. Communications Physics, 3(1), 151. https://doi.org/10.1038/s42005-020-00419-w
 
Grotevent, M. J., Yakunin, S., Bachmann, D., Romero, C., Vázquez de Aldana, J. R., Madi, M., Calame, M., Kovalenko, M. V., & Shorubalko, I. (2023). Integrated photodetectors for compact Fourier-transform waveguide spectrometers. Nature Photonics, 17(1), 59-64. https://doi.org/10.1038/s41566-022-01088-7
 
Sala, G., Lambert, C.-H., Finizio, S., Raposo, V., Krizakova, V., Krishnaswamy, G., Weigand, M., Raabe, J., Rossell, M. D., Martinez, E., & Gambardella, P. (2022). Asynchronous current-induced switching of rare-earth and transition-metal sublattices in ferrimagnetic alloys. Nature Materials, 21(6), 640-646. https://doi.org/10.1038/s41563-022-01248-8
 
De Las Heras, A., Pandey, A. K., San Román, J., Serrano, J., Baynard, E., Dovillaire, G., Pittman, M., Durfee, C. G., Plaja, L., Kazamias, S., Guilbaud, O., & Hernández-García, C. (2022). Extreme-ultraviolet vector-vortex beams from high harmonic generation. Optica, 9(1), 71. https://doi.org/10.1364/OPTICA.442304

Articles published per year

8111616 N7Z8DZV2 2022 1 apa 50 creator asc 1 7184 https://lumes.usal.es/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%224AH6CLLF%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Aymerich%20et%20al.%22%2C%22parsedDate%22%3A%222022-05-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BAymerich%2C%20M.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Canteli%2C%20D.%2C%20Molpeceres%2C%20C.%2C%20Alvarez%2C%20E.%2C%20Almengl%26%23xF3%3B%2C%20C.%2C%20%26amp%3B%20Flores-Arias%2C%20M.%20T.%20%282022%29.%20Soda-lime%20glass%20as%20biocompatible%20material%20to%20fabricate%20capillary-model%20devices%20by%20laser%20technologies.%20%26lt%3Bi%26gt%3BOptical%20Materials%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B12%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%201790.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOME.447286%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOME.447286%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Soda-lime%20glass%20as%20biocompatible%20material%20to%20fabricate%20capillary-model%20devices%20by%20laser%20technologies%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Aymerich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20R.%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Canteli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Molpeceres%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Alvarez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Almengl%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20T.%22%2C%22lastName%22%3A%22Flores-Arias%22%7D%5D%2C%22abstractNote%22%3A%22Microfluidic%20devices%20have%20been%20widely%20developed%20in%20the%20last%20decades%20because%20of%20the%20huge%20number%20of%20fields%20where%20they%20can%20be%20applied.%20Among%20all%20the%20different%20fabrication%20techniques%20available%2C%20laser%20direct%20writing%20stands%20out%20since%20it%20is%20a%20fast%2C%20accurate%2C%20versatile%20and%20non-contact%20method.%20It%20is%20particularly%20well-suited%20when%20working%20with%20glass%2C%20a%20robust%20and%20cost-efficient%20material.%20These%20laser%20advantages%20allow%20the%20direct%20fabrication%20of%20not%20only%20high%20quality%20single%20microchannel%20devices%20but%20also%20complex%20and%20bifurcated%20structures.%20This%20work%20establishes%20a%20roadmap%20for%20manufacturing%20capillary-model%20devices%20with%20good%20biocompability%20in%20soda-lime%20glass%20substrates%20with%20pulsed%20lasers%20operating%20in%20the%20nanosecond%2C%20picosecond%20and%20femtosecond%20temporal%20range.%20We%20determine%20the%20optimal%20laser%20parameters%20required%20for%20fabricating%20channels%20with%20a%20diameter%3Adepth%20rate%20of%202%3A1%2C%20keeping%20a%20semi-circular%20section.%20The%20presence%20of%20tin%20doping%20%28%5Cu223c2%25%29%20in%20the%20soda-lime%20glass%20is%20shown%20to%20enable%20the%20fabrication%20with%20nanosecond%20pulses%2C%20and%20to%20improve%20the%20quality%20of%20the%20channels%2C%20reducing%20the%20cracking%20at%20the%20sides%2C%20when%20picosecond%20or%20femtosecond%20pulses%20were%20used.%20On%20the%20other%20hand%2C%20two%20regimes%20of%20surface%20roughness%20are%20found%3A%20a%20low%20roughness%20regime%20for%20channels%20fabricated%20with%20nanosecond%20lasers%20and%20a%20high%20roughness%20regime%20for%20those%20fabricated%20with%20pico%20and%20femtosecond%20lasers.%20Human%20umbilical%20vein%20endothelial%20cells%20%28HUVEC%29%20are%20employed%20for%20cell%20culturing%20for%20evaluating%20the%20biocompatibility%20of%20the%20channels.%20Structures%20manufactured%20with%20the%20nanosecond%20laser%20resulted%20more%20suitable%20in%20terms%20of%20cell%20adhesion%20than%20those%20fabricated%20with%20the%20picosecond%20and%20femtosecond%20lasers%2C%20due%20to%20the%20different%20surface%20roughness%20regimes%20obtained.%20In%20order%20to%20increase%20the%20biocompatibility%20of%20the%20channels%20fabricated%20with%20pico%20and%20femtosecond%20lasers%20and%20to%20improve%20the%20cell%20growth%2C%20a%20controlled%20post-thermal%20treatment%20is%20carried%20out%20for%20smoothing%20the%20surface.%22%2C%22date%22%3A%222022-05-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOME.447286%22%2C%22ISSN%22%3A%222159-3930%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dome-12-5-1790%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22KULXC28D%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Bae%20et%20al.%22%2C%22parsedDate%22%3A%222022-11-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BBae%2C%20J.%20E.%2C%20Mateos%2C%20X.%2C%20Aguil%26%23xF3%3B%2C%20M.%2C%20D%26%23xED%3Baz%2C%20F.%2C%20Ajates%2C%20J.%20G.%2C%20Romero%2C%20C.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20%26amp%3B%20Rotermund%2C%20F.%20%282022%29.%20Multi-gigahertz%20mode-locked%20femtosecond%20Yb%3AKLuW%20waveguide%20lasers.%20%26lt%3Bi%26gt%3BPhotonics%20Research%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B10%26lt%3B%5C%2Fi%26gt%3B%2811%29%2C%202584.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FPRJ.471688%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FPRJ.471688%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Multi-gigahertz%20mode-locked%20femtosecond%20Yb%3AKLuW%20waveguide%20lasers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ji%20Eun%22%2C%22lastName%22%3A%22Bae%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Mateos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Magdalena%22%2C%22lastName%22%3A%22Aguil%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesc%22%2C%22lastName%22%3A%22D%5Cu00edaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20Garc%5Cu00eda%22%2C%22lastName%22%3A%22Ajates%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20Rodr%5Cu00edguez%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabian%22%2C%22lastName%22%3A%22Rotermund%22%7D%5D%2C%22abstractNote%22%3A%22We%20demonstrate%20multi-gigahertz%20continuous-wave%20mode-locking%20of%20a%20Yb%3AKLuW%20waveguide%20laser.%20A%20femtosecond-laser-inscribed%20Yb%3AKLuW%20channel%20waveguide%20in%20an%20extended%20laser%20cavity%20delivers%20a%20fundamentally%20mode-locked%20laser%20near%201030%5Cu00a0nm.%20A%20tunable%20few-centimeter-long%20cavity%20containing%20a%20single-walled%20carbon%20nanotube%20saturable%20absorber%20as%20mode-locker%20generates%20self-starting%20femtosecond%20pulses%20with%20average%20output%20powers%20exceeding%20210%5Cu00a0mW%20at%20repetition%20rates%20of%202.27%2C%202.69%2C%20and%203.55%5Cu00a0GHz.%20The%20laser%20cavity%2C%20which%20includes%20a%20wedged%20waveguide%2C%20is%20extended%20by%20using%20a%20lens%20pair%20that%20controls%20the%20laser%20fluence%20on%20the%20saturable%20absorber%20for%20reliable%20mode-locked%20operation%20without%20instability.%20The%20presented%20laser%20performance%2C%20mode-locked%20up%20to%203.55%5Cu00a0GHz%2C%20highly%20suggests%20the%20potential%20of%20crystalline%20Yb%3AKLuW%20waveguides%20for%20realizing%20high-power%20ultrafast%20lasers%20with%20higher%20GHz%20repetition%20rates%20in%20a%20quasi-monolithic%20cavity.%22%2C%22date%22%3A%222022-11-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FPRJ.471688%22%2C%22ISSN%22%3A%222327-9125%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dprj-10-11-2584%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A59Z%22%7D%7D%2C%7B%22key%22%3A%22GSWYGF6U%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Bola%5Cu00f1os%20et%20al.%22%2C%22parsedDate%22%3A%222022-10-28%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BBola%26%23xF1%3Bos%2C%20S.%2C%20Sladkov%2C%20A.%2C%20Smets%2C%20R.%2C%20Chen%2C%20S.%20N.%2C%20Grisollet%2C%20A.%2C%20Filippov%2C%20E.%2C%20Henares%2C%20J.-L.%2C%20Nastasa%2C%20V.%2C%20Pikuz%2C%20S.%2C%20Riquier%2C%20R.%2C%20Safronova%2C%20M.%2C%20Severin%2C%20A.%2C%20Starodubtsev%2C%20M.%2C%20%26amp%3B%20Fuchs%2C%20J.%20%282022%29.%20Laboratory%20evidence%20of%20magnetic%20reconnection%20hampered%20in%20obliquely%20interacting%20flux%20tubes.%20%26lt%3Bi%26gt%3BNature%20Communications%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B13%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%206426.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-022-33813-9%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-022-33813-9%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Laboratory%20evidence%20of%20magnetic%20reconnection%20hampered%20in%20obliquely%20interacting%20flux%20tubes%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Simon%22%2C%22lastName%22%3A%22Bola%5Cu00f1os%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrey%22%2C%22lastName%22%3A%22Sladkov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roch%22%2C%22lastName%22%3A%22Smets%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophia%20N.%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alain%22%2C%22lastName%22%3A%22Grisollet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Evgeny%22%2C%22lastName%22%3A%22Filippov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jose-Luis%22%2C%22lastName%22%3A%22Henares%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Viorel%22%2C%22lastName%22%3A%22Nastasa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sergey%22%2C%22lastName%22%3A%22Pikuz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Raph%5Cu00ebl%22%2C%22lastName%22%3A%22Riquier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maria%22%2C%22lastName%22%3A%22Safronova%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandre%22%2C%22lastName%22%3A%22Severin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mikhail%22%2C%22lastName%22%3A%22Starodubtsev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julien%22%2C%22lastName%22%3A%22Fuchs%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Magnetic%20reconnection%20can%20occur%20when%20two%20plasmas%2C%20having%20anti-parallel%20components%20of%20the%20magnetic%20field%2C%20encounter%20each%20other.%20In%20the%20reconnection%20plane%2C%20the%20anti-parallel%20component%20of%20the%20field%20is%20annihilated%20and%20its%20energy%20released%20in%20the%20plasma.%20Here%2C%20we%20investigate%20through%20laboratory%20experiments%20the%20reconnection%20between%20two%20flux%20tubes%20that%20are%20not%20strictly%20anti-parallel.%20Compression%20of%20the%20anti-parallel%20component%20of%20the%20magnetic%20field%20is%20observed%2C%20as%20well%20as%20a%20decrease%20of%20the%20reconnection%20efficiency.%20Concomitantly%2C%20we%20observe%20delayed%20plasma%20heating%20and%20enhanced%20particle%20acceleration.%20Three-dimensional%20hybrid%20simulations%20support%20these%20observations%20and%20highlight%20the%20plasma%20heating%20inhibition%20and%20reconnection%20efficiency%20reduction%20for%20these%20obliquely%20oriented%20flux%20tubes.%22%2C%22date%22%3A%222022-10-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-022-33813-9%22%2C%22ISSN%22%3A%222041-1723%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41467-022-33813-9%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A45Z%22%7D%7D%2C%7B%22key%22%3A%22MQBC65Z6%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Boyero-Garc%5Cu00eda%20et%20al.%22%2C%22parsedDate%22%3A%222022-04-25%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BBoyero-Garc%26%23xED%3Ba%2C%20R.%2C%20Garc%26%23xED%3Ba-Cabrera%2C%20A.%2C%20Zurr%26%23xF3%3Bn-Cifuentes%2C%20O.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20%26amp%3B%20Plaja%2C%20L.%20%282022%29.%20Non-classical%20high%20harmonic%20generation%20in%20graphene%20driven%20by%20linearly-polarized%20laser%20pulses.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B30%26lt%3B%5C%2Fi%26gt%3B%289%29%2C%2015546.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.452201%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.452201%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Non-classical%20high%20harmonic%20generation%20in%20graphene%20driven%20by%20linearly-polarized%20laser%20pulses%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberto%22%2C%22lastName%22%3A%22Boyero-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ana%22%2C%22lastName%22%3A%22Garc%5Cu00eda-Cabrera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oscar%22%2C%22lastName%22%3A%22Zurr%5Cu00f3n-Cifuentes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%5D%2C%22abstractNote%22%3A%22Recent%20studies%20in%20high-order%20harmonic%20generation%20%28HHG%29%20in%20solid%20targets%20reveal%20new%20scenarios%20of%20extraordinary%20rich%20electronic%20dynamics%2C%20in%20comparison%20to%20the%20atomic%20and%20molecular%20cases.%20For%20the%20later%2C%20the%20main%20aspects%20of%20the%20process%20can%20be%20described%20semiclassically%20in%20terms%20of%20electrons%20that%20recombine%20when%20the%20trajectories%20revisit%20the%20parent%20ion.%20HHG%20in%20solids%20has%20been%20described%20by%20an%20analogous%20mechanism%2C%20in%20this%20case%20involving%20electron-hole%20pair%20recombinations.%20However%2C%20it%20has%20been%20recently%20reported%20that%20a%20substantial%20part%20of%20the%20HHG%20emission%20corresponds%20to%20situations%20where%20the%20electron%20and%20hole%20trajectories%20do%20not%20overlap%20in%20space.%20According%20to%20the%20present%20knowledge%2C%20HHG%20from%20this%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20imperfect%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20recollisions%20reflects%20the%20quantum%20nature%20of%20the%20process%2C%20arising%20in%20systems%20with%20large%20Berry%20curvatures%20or%20for%20elliptically%20polarized%20driving%20fields.%20In%20this%20work%2C%20we%20demonstrate%20that%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20imperfect%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20recollisions%20are%20also%20relevant%20in%20the%20more%20general%20case.%20We%20show%20the%20signature%20of%20such%20recollisions%20in%20the%20HHG%20spectrum%20from%20monolayer%20graphene%20%5Cu2014a%20system%20with%20null%20Berry%20curvature%5Cu2014%20irradiated%20by%20linearly%20polarized%20driving%20fields.%20Our%20calculations%20also%20reveal%20that%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20imperfect%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20multiple-order%20recollisions%20contribute%20to%20the%20harmonic%20emission%20when%20electron-hole%20excursion%20times%20exceed%20one%20cycle%20of%20the%20driving%20field.%20We%20believe%20that%20our%20work%20adds%20a%20substantial%20contribution%20to%20the%20full%20understanding%20of%20the%20sub-femtosecond%20dynamics%20of%20HHG%20in%20solid%20systems.%22%2C%22date%22%3A%222022-04-25%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.452201%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-30-9-15546%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A55Z%22%7D%7D%2C%7B%22key%22%3A%22QG9I6HCN%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Boyero-Garc%5Cu00eda%20et%20al.%22%2C%22parsedDate%22%3A%222022-09-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BBoyero-Garc%26%23xED%3Ba%2C%20R.%2C%20Garc%26%23xED%3Ba-Cabrera%2C%20A.%2C%20Zurr%26%23xF3%3Bn-Cifuentes%2C%20O.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20%26amp%3B%20Plaja%2C%20L.%20%282022%29.%20High-order%20harmonic%20spectroscopy%20of%20polycrystalline%20graphene.%20%26lt%3Bi%26gt%3BOptical%20Materials%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B12%26lt%3B%5C%2Fi%26gt%3B%289%29%2C%203543.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOME.468125%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOME.468125%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22High-order%20harmonic%20spectroscopy%20of%20polycrystalline%20graphene%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberto%22%2C%22lastName%22%3A%22Boyero-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ana%22%2C%22lastName%22%3A%22Garc%5Cu00eda-Cabrera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oscar%22%2C%22lastName%22%3A%22Zurr%5Cu00f3n-Cifuentes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%5D%2C%22abstractNote%22%3A%22Present%20mass%20production%20of%20large-area%20single-layer%20graphene%20relies%20fundamentally%20on%20chemical%20vapor%20deposition%20methods.%20The%20generation%20of%20grain%20boundaries%2C%20which%20divides%20the%20sample%20into%20a%20set%20of%20crystalline%20domains%2C%20is%20inherent%20to%20these%20fabrication%20methods.%20Recent%20studies%20have%20demonstrated%20a%20strong%20anisotropy%20in%20the%20ultrafast%20non-linear%20response%20of%20single-layer%20graphene%20when%20subjected%20to%20non-perturbative%2C%20intense%20laser%20fields%20below%20the%20damage%20threshold.%20We%20propose%20to%20exploit%20this%20anisotropy%20to%20characterize%20the%20size%20distribution%20of%20graphene%20domains%20in%20polycrystals%20via%20high-order%20harmonic%20polarimetry.%20Our%20simulation%20results%20demonstrate%20the%20sensitivity%20of%20the%20harmonic%20polarization%20state%20to%20details%20of%20the%20polycrystal%20grain%20distribution.%20In%20particular%2C%20we%20show%20that%20the%20rotation%20in%20the%20polarization%20tilt%20of%20the%20highest-order%20harmonics%20holds%20information%20about%20the%20grain%20distribution%20in%20the%20polycrystal.%20As%20a%20proof-of-concept%2C%20we%20propose%20a%20method%20to%20determine%20the%20standard%20deviation%20of%20the%20grain%20size%20distribution%20from%20the%20values%20of%20the%20most%20frequent%20grain%20size%20and%20the%20standard%20deviation%20of%20the%20harmonic%20tilt%20rotation%20from%20a%20set%20of%20hypothetical%20measurements%20on%20different%20polycrystal%20realizations.%20Our%20work%20reveals%20the%20capability%20of%20high-order%20harmonic%20polarimetry%20to%20characterize%20polycrystalline%20two-dimensional%20materials.%22%2C%22date%22%3A%222022-09-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOME.468125%22%2C%22ISSN%22%3A%222159-3930%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dome-12-9-3543%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A20Z%22%7D%7D%2C%7B%22key%22%3A%22KMFQC6D9%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Brigner%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BBrigner%2C%20W.%20H.%2C%20Hassan%2C%20N.%2C%20Hu%2C%20X.%2C%20Bennett%2C%20C.%20H.%2C%20Garcia-Sanchez%2C%20F.%2C%20Cui%2C%20C.%2C%20Velasquez%2C%20A.%2C%20Marinella%2C%20M.%20J.%2C%20Incorvia%2C%20J.%20A.%20C.%2C%20%26amp%3B%20Friedman%2C%20J.%20S.%20%282022%29.%20Domain%20Wall%20Leaky%20Integrate-and-Fire%20Neurons%20With%20Shape-Based%20Configurable%20Activation%20Functions.%20%26lt%3Bi%26gt%3BIEEE%20Transactions%20on%20Electron%20Devices%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B69%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%202353%26%23×2013%3B2359.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTED.2022.3159508%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTED.2022.3159508%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Domain%20Wall%20Leaky%20Integrate-and-Fire%20Neurons%20With%20Shape-Based%20Configurable%20Activation%20Functions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wesley%20H.%22%2C%22lastName%22%3A%22Brigner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Naimul%22%2C%22lastName%22%3A%22Hassan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuan%22%2C%22lastName%22%3A%22Hu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%20H.%22%2C%22lastName%22%3A%22Bennett%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Garcia-Sanchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Can%22%2C%22lastName%22%3A%22Cui%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alvaro%22%2C%22lastName%22%3A%22Velasquez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20J.%22%2C%22lastName%22%3A%22Marinella%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean%20Anne%20C.%22%2C%22lastName%22%3A%22Incorvia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joseph%20S.%22%2C%22lastName%22%3A%22Friedman%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%225%5C%2F2022%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FTED.2022.3159508%22%2C%22ISSN%22%3A%220018-9383%2C%201557-9646%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F9743836%5C%2F%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A18Z%22%7D%7D%2C%7B%22key%22%3A%2276WA78QP%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Carlson%20et%20al.%22%2C%22parsedDate%22%3A%222022-10-15%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCarlson%2C%20D.%2C%20Tanksalvala%2C%20M.%2C%20Morrill%2C%20D.%2C%20Roman%2C%20J.%20S.%2C%20Jarque%2C%20E.%20C.%2C%20Kapteyn%2C%20H.%20C.%2C%20Murnane%2C%20M.%20M.%2C%20%26amp%3B%20Hemmer%2C%20M.%20%282022%29.%20Nonlinear%20post-compression%20in%20multi-pass%20cells%20in%20the%20mid-IR%20region%20using%20bulk%20materials.%20%26lt%3Bi%26gt%3BOptics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B47%26lt%3B%5C%2Fi%26gt%3B%2820%29%2C%205289.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.471458%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.471458%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Nonlinear%20post-compression%20in%20multi-pass%20cells%20in%20the%20mid-IR%20region%20using%20bulk%20materials%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Carlson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Tanksalvala%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Morrill%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20San%22%2C%22lastName%22%3A%22Roman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%20Conejero%22%2C%22lastName%22%3A%22Jarque%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%20C.%22%2C%22lastName%22%3A%22Kapteyn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20M.%22%2C%22lastName%22%3A%22Murnane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Hemmer%22%7D%5D%2C%22abstractNote%22%3A%22We%20numerically%20investigate%20the%20regime%20of%20nonlinear%20pulse%20compression%20at%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctmid-IR%20wavelengths%20in%20a%20multi-pass%20cell%20%28MPC%29%20containing%20a%20dielectric%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctplate.%20This%20post-compression%20setup%20allows%20for%20ionization-free%20spectral%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctbroadening%20and%20self-compression%20while%20mitigating%20self-focusing%5Cn%5Ct%5Ct%5Ct%5Ct%5Cteffects.%20We%20find%20that%20self-compression%20occurs%20for%20a%20wide%20range%20of%20MPC%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctand%20pulse%20parameters%20and%20derive%20scaling%20rules%20that%20enable%20its%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctoptimization.%20We%20also%20reveal%20the%20solitonic%20dynamics%20of%20the%20pulse%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctpropagation%20in%20the%20MPC%20and%20its%20limitations%20and%20show%20that%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctspatiotemporal%5C%2Fspectral%20couplings%20can%20be%20mitigated%20for%20appropriately%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctchosen%20parameters.%20In%20addition%2C%20we%20reveal%20the%20formation%20of%20spectral%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctfeatures%20akin%20to%20quasi-phase%20matched%20degenerate%20four-wave%20mixing.%5Cn%5Ct%5Ct%5Ct%5Ct%5CtFinally%2C%20we%20present%20two%20case%20studies%20of%20self-compression%20at%203-%5Cu03bcm%20and%5Cn%5Ct%5Ct%5Ct%5Ct%5Ct6-%5Cu03bcm%20wavelengths%20using%20pulse%20parameters%20compatible%20with%20driving%5Cn%5Ct%5Ct%5Ct%5Ct%5Cthigh-field%20physics%20experiments.%20The%20simulations%20presented%20in%20this%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctpaper%20set%20a%20framework%20for%20future%20experimental%20work%20using%20few-cycle%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctpulses%20at%20mid-IR%20wavelengths.%22%2C%22date%22%3A%222022-10-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOL.471458%22%2C%22ISSN%22%3A%220146-9592%2C%201539-4794%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dol-47-20-5289%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A35Z%22%7D%7D%2C%7B%22key%22%3A%22TICJZY27%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Curcio%20and%20Gatti%22%2C%22parsedDate%22%3A%222022-02-10%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCurcio%2C%20A.%2C%20%26amp%3B%20Gatti%2C%20G.%20%282022%29.%20Time-domain%20study%20of%20the%20synchrotron%20radiation%20emitted%20from%20electron%20beams%20in%20plasma%20focusing%20channels.%20%26lt%3Bi%26gt%3BPhysical%20Review%20E%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B105%26lt%3B%5C%2Fi%26gt%3B%282%29%2C%20025201.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevE.105.025201%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevE.105.025201%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Time-domain%20study%20of%20the%20synchrotron%20radiation%20emitted%20from%20electron%20beams%20in%20plasma%20focusing%20channels%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Curcio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Gatti%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-2-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevE.105.025201%22%2C%22ISSN%22%3A%222470-0045%2C%202470-0053%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevE.105.025201%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A38Z%22%7D%7D%2C%7B%22key%22%3A%22UZL2C693%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Curcio%20et%20al.%22%2C%22parsedDate%22%3A%222022-06-28%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCurcio%2C%20A.%2C%20Ehret%2C%20M.%2C%20Perez-Hernandez%2C%20J.%20A.%2C%20%26amp%3B%20Gatti%2C%20G.%20%282022%29.%20Observation%20of%20tunable%20parametric%20x-ray%20radiation%20emitted%20by%20laser-plasma%20electron%20beams%20interacting%20with%20crystalline%20structures.%20%26lt%3Bi%26gt%3BPhysical%20Review%20Accelerators%20and%20Beams%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B25%26lt%3B%5C%2Fi%26gt%3B%286%29%2C%20063403.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevAccelBeams.25.063403%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevAccelBeams.25.063403%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Observation%20of%20tunable%20parametric%20x-ray%20radiation%20emitted%20by%20laser-plasma%20electron%20beams%20interacting%20with%20crystalline%20structures%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Curcio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Ehret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%5Cu2009A.%22%2C%22lastName%22%3A%22Perez-Hernandez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Gatti%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-6-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevAccelBeams.25.063403%22%2C%22ISSN%22%3A%222469-9888%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevAccelBeams.25.063403%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A10Z%22%7D%7D%2C%7B%22key%22%3A%22MGCEITUB%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22De%20Las%20Heras%20et%20al.%22%2C%22parsedDate%22%3A%222022-01-20%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BDe%20Las%20Heras%2C%20A.%2C%20Pandey%2C%20A.%20K.%2C%20San%20Rom%26%23xE1%3Bn%2C%20J.%2C%20Serrano%2C%20J.%2C%20Baynard%2C%20E.%2C%20Dovillaire%2C%20G.%2C%20Pittman%2C%20M.%2C%20Durfee%2C%20C.%20G.%2C%20Plaja%2C%20L.%2C%20Kazamias%2C%20S.%2C%20Guilbaud%2C%20O.%2C%20%26amp%3B%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%20%282022%29.%20Extreme-ultraviolet%20vector-vortex%20beams%20from%20high%20harmonic%20generation.%20%26lt%3Bi%26gt%3BOptica%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B9%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%2071.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOPTICA.442304%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOPTICA.442304%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Extreme-ultraviolet%20vector-vortex%20beams%20from%20high%20harmonic%20generation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alba%22%2C%22lastName%22%3A%22De%20Las%20Heras%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alok%20Kumar%22%2C%22lastName%22%3A%22Pandey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%22%2C%22lastName%22%3A%22San%20Rom%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%22%2C%22lastName%22%3A%22Serrano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elsa%22%2C%22lastName%22%3A%22Baynard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Dovillaire%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Moana%22%2C%22lastName%22%3A%22Pittman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%20G.%22%2C%22lastName%22%3A%22Durfee%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophie%22%2C%22lastName%22%3A%22Kazamias%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olivier%22%2C%22lastName%22%3A%22Guilbaud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%5D%2C%22abstractNote%22%3A%22Structured%20light%20in%20the%20short-wavelength%20regime%20opens%20exciting%20avenues%20for%20the%20study%20of%20ultrafast%20spin%20and%20electronic%20dynamics.%20Here%2C%20we%20demonstrate%20theoretically%20and%20experimentally%20the%20generation%20of%20vector-vortex%20beams%20%28VVB%29%20in%20the%20extreme%20ultraviolet%20through%20high-order%20harmonic%20generation%20%28HHG%29.%20The%20up-conversion%20of%20VVB%2C%20which%20are%20spatially%20tailored%20in%20their%20spin%20and%20orbital%20angular%20momentum%2C%20is%20ruled%20by%20the%20conservation%20of%20the%20topological%20Pancharatnam%20charge%20in%20HHG.%20Despite%20the%20complex%20propagation%20of%20the%20driving%20beam%2C%20high-harmonic%20VVB%20are%20robustly%20generated%20with%20smooth%20propagation%20properties.%20Remarkably%2C%20we%20find%20out%20that%20the%20conversion%20efficiency%20of%20high-harmonic%20VVB%20increases%20with%20the%20driving%20topological%20charge.%20Our%20work%20opens%20the%20possibility%20to%20synthesize%20attosecond%20helical%20structures%20with%20spatially%20varying%20polarization%2C%20a%20unique%20tool%20to%20probe%20spatiotemporal%20dynamics%20in%20inhomogeneous%20media%20or%20polarization-dependent%20systems.%22%2C%22date%22%3A%222022-01-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOPTICA.442304%22%2C%22ISSN%22%3A%222334-2536%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doptica-9-1-71%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22LCCFGU4Z%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Fattouhi%20et%20al.%22%2C%22parsedDate%22%3A%222022-10-10%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BFattouhi%2C%20M.%2C%20Garcia-Sanchez%2C%20F.%2C%20Yanes%2C%20R.%2C%20Raposo%2C%20V.%2C%20Martinez%2C%20E.%2C%20%26amp%3B%20Lopez-Diaz%2C%20L.%20%282022%29.%20Absence%20of%20Walker%20Breakdown%20in%20the%20Dynamics%20of%20Chiral%20N%26%23xE9%3Bel%20Domain%20Walls%20Driven%20by%20In-Plane%20Strain%20Gradients.%20%26lt%3Bi%26gt%3BPhysical%20Review%20Applied%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B18%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20044023.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.18.044023%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.18.044023%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Absence%20of%20Walker%20Breakdown%20in%20the%20Dynamics%20of%20Chiral%20N%5Cu00e9el%20Domain%20Walls%20Driven%20by%20In-Plane%20Strain%20Gradients%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mouad%22%2C%22lastName%22%3A%22Fattouhi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Garcia-Sanchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rocio%22%2C%22lastName%22%3A%22Yanes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Martinez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Lopez-Diaz%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-10-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.18.044023%22%2C%22ISSN%22%3A%222331-7019%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevApplied.18.044023%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A24Z%22%7D%7D%2C%7B%22key%22%3A%22I9EDJ799%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Fu%20et%20al.%22%2C%22parsedDate%22%3A%222022-12-23%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BFu%2C%20Z.%2C%20Chen%2C%20Y.%2C%20Peng%2C%20S.%2C%20Zhu%2C%20B.%2C%20Li%2C%20B.%2C%20Mart%26%23xED%3Bn-Hern%26%23xE1%3Bndez%2C%20R.%2C%20Fan%2C%20G.%2C%20Wang%2C%20Y.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20Jin%2C%20C.%2C%20Murnane%2C%20M.%2C%20Kapteyn%2C%20H.%2C%20%26amp%3B%20Tao%2C%20Z.%20%282022%29.%20Extension%20of%20the%20bright%20high-harmonic%20photon%20energy%20range%20via%20nonadiabatic%20critical%20phase%20matching.%20%26lt%3Bi%26gt%3BScience%20Advances%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B8%26lt%3B%5C%2Fi%26gt%3B%2851%29%2C%20eadd7482.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.add7482%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.add7482%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Extension%20of%20the%20bright%20high-harmonic%20photon%20energy%20range%20via%20nonadiabatic%20critical%20phase%20matching%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zongyuan%22%2C%22lastName%22%3A%22Fu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yudong%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sainan%22%2C%22lastName%22%3A%22Peng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bingbing%22%2C%22lastName%22%3A%22Zhu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Baochang%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rodrigo%22%2C%22lastName%22%3A%22Mart%5Cu00edn-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guangyu%22%2C%22lastName%22%3A%22Fan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yihua%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cheng%22%2C%22lastName%22%3A%22Jin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%22%2C%22lastName%22%3A%22Murnane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henry%22%2C%22lastName%22%3A%22Kapteyn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhensheng%22%2C%22lastName%22%3A%22Tao%22%7D%5D%2C%22abstractNote%22%3A%22The%20concept%20of%20critical%20ionization%20fraction%20has%20been%20essential%20for%20high-harmonic%20generation%2C%20because%20it%20dictates%20the%20maximum%20driving%20laser%20intensity%20while%20preserving%20the%20phase%20matching%20of%20harmonics.%20In%20this%20work%2C%20we%20reveal%20a%20second%2C%20nonadiabatic%20critical%20ionization%20fraction%2C%20which%20substantially%20extends%20the%20phase-matched%20harmonic%20energy%2C%20arising%20because%20of%20the%20strong%20reshaping%20of%20the%20intense%20laser%20field%20in%20a%20gas%20plasma.%20We%20validate%20this%20understanding%20through%20a%20systematic%20comparison%20between%20experiment%20and%20theory%20for%20a%20wide%20range%20of%20laser%20conditions.%20In%20particular%2C%20the%20properties%20of%20the%20high-harmonic%20spectrum%20versus%20the%20laser%20intensity%20undergoes%20three%20distinctive%20scenarios%3A%20%28i%29%20coincidence%20with%20the%20single-atom%20cutoff%2C%20%28ii%29%20strong%20spectral%20extension%2C%20and%20%28iii%29%20spectral%20energy%20saturation.%20We%20present%20an%20analytical%20model%20that%20predicts%20the%20spectral%20extension%20and%20reveals%20the%20increasing%20importance%20of%20the%20nonadiabatic%20effects%20for%20mid-infrared%20lasers.%20These%20findings%20are%20important%20for%20the%20development%20of%20high-brightness%20soft%20x-ray%20sources%20for%20applications%20in%20spectroscopy%20and%20imaging.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Reshaping%20of%20the%20driving%20laser%20field%20as%20it%20propagates%20can%20extend%20the%20bright%20photon%20energy%20range%20of%20soft%20X-ray%20high%20harmonics.%22%2C%22date%22%3A%222022-12-23%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1126%5C%2Fsciadv.add7482%22%2C%22ISSN%22%3A%222375-2548%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.science.org%5C%2Fdoi%5C%2F10.1126%5C%2Fsciadv.add7482%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A19Z%22%7D%7D%2C%7B%22key%22%3A%22B5QX6D8Y%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gal%5Cu00e1n%20et%20al.%22%2C%22parsedDate%22%3A%222022-02-28%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BGal%26%23xE1%3Bn%2C%20M.%20F.%2C%20Conejero%20Jarque%2C%20E.%2C%20%26amp%3B%20San%20Roman%2C%20J.%20%282022%29.%20Optimization%20of%20pulse%20self-compression%20in%20hollow%20capillary%20fibers%20using%20decreasing%20pressure%20gradients.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B30%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%206755.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.451264%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.451264%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Optimization%20of%20pulse%20self-compression%20in%20hollow%20capillary%20fibers%20using%20decreasing%20pressure%20gradients%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marina%20Fern%5Cu00e1ndez%22%2C%22lastName%22%3A%22Gal%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Enrique%22%2C%22lastName%22%3A%22Conejero%20Jarque%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%22%2C%22lastName%22%3A%22San%20Roman%22%7D%5D%2C%22abstractNote%22%3A%22The%20improvement%20of%20techniques%20for%20the%20generation%20of%20near-infrared%20%28NIR%29%20few-cycle%20pulses%20is%20paving%20the%20way%20for%20new%20scenarios%20in%20time-resolved%20spectroscopy%20and%20the%20generation%20of%20ultrashort%20extreme-ultraviolet%20pulses%20through%20high-harmonic%20generation.%20In%20this%20work%2C%20we%20numerically%20study%20how%20to%20optimize%20the%20self-compression%20of%20NIR%20pulses%20using%20decreasing%20pressure%20gradients%20in%20hollow%20capillary%20fibers%20%28HCFs%29.%20We%20identify%20a%20moderate%20nonlinear%20regime%20in%20which%20sub-cycle%20pulses%20are%20obtained%20with%20very%20good%20temporal%20quality%20from%20an%20input%2030%20fs%20pulse%20centered%20at%20a%20800%20nm%20wavelength%20and%20coupled%20as%20the%20fundamental%20mode%20of%20an%20argon-filled%20HCF%20fully%20evacuated%20at%20the%20output%20end.%20Surprisingly%2C%20we%20observe%20that%20there%20is%20a%20relatively%20broad%20region%20of%20parameters%20for%20which%20the%20optimum%20self-compression%20takes%20place%2C%20defined%20by%20a%20simple%20relation%20between%20the%20input%20pulse%20energy%20and%20the%20initial%20gas%20pressure.%22%2C%22date%22%3A%222022-02-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.451264%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-30-5-6755%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A03Z%22%7D%7D%2C%7B%22key%22%3A%22HIU6TL8I%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hu%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BHu%2C%20X.%2C%20Walker%2C%20B.%20W.%2C%20Garc%26%23xED%3Ba-S%26%23xE1%3Bnchez%2C%20F.%2C%20Edwards%2C%20A.%20J.%2C%20Zhou%2C%20P.%2C%20Incorvia%2C%20J.%20A.%20C.%2C%20Paler%2C%20A.%2C%20Frank%2C%20M.%20P.%2C%20%26amp%3B%20Friedman%2C%20J.%20S.%20%282022%29.%20Logical%20and%20Physical%20Reversibility%20of%20Conservative%20Skyrmion%20Logic.%20%26lt%3Bi%26gt%3BIEEE%20Magnetics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B13%26lt%3B%5C%2Fi%26gt%3B%2C%201%26%23×2013%3B5.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FLMAG.2022.3174514%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FLMAG.2022.3174514%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Logical%20and%20Physical%20Reversibility%20of%20Conservative%20Skyrmion%20Logic%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuan%22%2C%22lastName%22%3A%22Hu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%20W.%22%2C%22lastName%22%3A%22Walker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Garc%5Cu00eda-S%5Cu00e1nchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%20J.%22%2C%22lastName%22%3A%22Edwards%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peng%22%2C%22lastName%22%3A%22Zhou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean%20Anne%20C.%22%2C%22lastName%22%3A%22Incorvia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandru%22%2C%22lastName%22%3A%22Paler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20P.%22%2C%22lastName%22%3A%22Frank%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joseph%20S.%22%2C%22lastName%22%3A%22Friedman%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FLMAG.2022.3174514%22%2C%22ISSN%22%3A%221949-307X%2C%201949-3088%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F9772937%5C%2F%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A14Z%22%7D%7D%2C%7B%22key%22%3A%2299ZDLK2A%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kalin%20et%20al.%22%2C%22parsedDate%22%3A%222022-08-24%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BKalin%2C%20J.%2C%20Sievers%2C%20S.%2C%20F%26%23xFC%3Bser%2C%20H.%2C%20Schumacher%2C%20H.%20W.%2C%20Bieler%2C%20M.%2C%20Garc%26%23xED%3Ba-S%26%23xE1%3Bnchez%2C%20F.%2C%20Bauer%2C%20A.%2C%20%26amp%3B%20Pfleiderer%2C%20C.%20%282022%29.%20Optically%20excited%20spin%20dynamics%20of%20thermally%20metastable%20skyrmions%20in%20Fe%200.75%20Co%200.25%20Si.%20%26lt%3Bi%26gt%3BPhysical%20Review%20B%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B106%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%20054430.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.106.054430%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.106.054430%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Optically%20excited%20spin%20dynamics%20of%20thermally%20metastable%20skyrmions%20in%20Fe%200.75%20Co%200.25%20Si%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Kalin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Sievers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22F%5Cu00fcser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%20W.%22%2C%22lastName%22%3A%22Schumacher%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bieler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Garc%5Cu00eda-S%5Cu00e1nchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Bauer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Pfleiderer%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-8-24%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.106.054430%22%2C%22ISSN%22%3A%222469-9950%2C%202469-9969%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevB.106.054430%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A24Z%22%7D%7D%2C%7B%22key%22%3A%22R89ZC7PD%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Liu%20et%20al.%22%2C%22parsedDate%22%3A%222022-04-04%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BLiu%2C%20H.%2C%20Jia%2C%20Y.%2C%20%26amp%3B%20Romero%2C%20C.%20%282022%29.%20Editorial%3A%20Femtosecond%20Laser%20Inscribed%20Passive%20and%20Active%20Guiding%20Structures%20in%20Transparent%20Materials.%20%26lt%3Bi%26gt%3BFrontiers%20in%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B10%26lt%3B%5C%2Fi%26gt%3B%2C%20875736.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffphy.2022.875736%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffphy.2022.875736%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Editorial%3A%20Femtosecond%20Laser%20Inscribed%20Passive%20and%20Active%20Guiding%20Structures%20in%20Transparent%20Materials%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hongliang%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuechen%22%2C%22lastName%22%3A%22Jia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-4-4%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffphy.2022.875736%22%2C%22ISSN%22%3A%222296-424X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffphy.2022.875736%5C%2Ffull%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A44Z%22%7D%7D%2C%7B%22key%22%3A%22Q6S47DAV%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22L%5Cu00f3pez-Ripa%20et%20al.%22%2C%22parsedDate%22%3A%222022-04-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BL%26%23xF3%3Bpez-Ripa%2C%20M.%2C%20Sola%2C%20%26%23xCD%3B.%20J.%2C%20%26amp%3B%20Alonso%2C%20B.%20%282022%29.%20Bulk%20lateral%20shearing%20interferometry%20for%20spatiotemporal%20study%20of%20time-varying%20ultrashort%20optical%20vortices.%20%26lt%3Bi%26gt%3BPhotonics%20Research%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B10%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20922.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FPRJ.448339%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FPRJ.448339%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Bulk%20lateral%20shearing%20interferometry%20for%20spatiotemporal%20study%20of%20time-varying%20ultrashort%20optical%20vortices%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Miguel%22%2C%22lastName%22%3A%22L%5Cu00f3pez-Ripa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjam%5Cu00edn%22%2C%22lastName%22%3A%22Alonso%22%7D%5D%2C%22abstractNote%22%3A%22The%20spatiotemporal%20measurement%20of%20ultrashort%20laser%20beams%20usually%20involves%20techniques%20with%20complex%20set-ups%20or%20limited%20by%20instabilities%20that%20are%20unable%20to%20accurately%20retrieve%20the%20frequency-resolved%20wavefront.%20Here%2C%20we%20solve%20these%20drawbacks%20by%20implementing%20a%20simple%2C%20compact%2C%20and%20ultra-stable%20spatiotemporal%20characterization%20technique%20based%20on%20bulk%20lateral%20shearing%20spectral%20interferometry%20using%20a%20birefringent%20uniaxial%20crystal.%20We%20apply%20it%20to%20retrieve%20complex%20spatiotemporal%20structures%20by%20characterizing%20ultrafast%20optical%20vortices%20with%20constant%20and%20time-varying%20orbital%20angular%20momentum.%20This%20technique%20can%20operate%20in%20all%20the%20transparency%20range%20of%20the%20anisotropic%20elements%2C%20enabling%20the%20characterization%20in%20different%20spectral%20ranges%20like%20infrared%2C%20visible%2C%20or%20ultraviolet.%22%2C%22date%22%3A%222022-04-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FPRJ.448339%22%2C%22ISSN%22%3A%222327-9125%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dprj-10-4-922%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A26Z%22%7D%7D%2C%7B%22key%22%3A%22HPXZUMEA%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Malko%20et%20al.%22%2C%22parsedDate%22%3A%222022-05-24%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BMalko%2C%20S.%2C%20Cayzac%2C%20W.%2C%20Ospina-Boh%26%23xF3%3Brquez%2C%20V.%2C%20Bhutwala%2C%20K.%2C%20Bailly-Grandvaux%2C%20M.%2C%20McGuffey%2C%20C.%2C%20Fedosejevs%2C%20R.%2C%20Vaisseau%2C%20X.%2C%20Tauschwitz%2C%20An.%2C%20Api%26%23xF1%3Baniz%2C%20J.%20I.%2C%20De%20Luis%20Blanco%2C%20D.%2C%20Gatti%2C%20G.%2C%20Huault%2C%20M.%2C%20Hernandez%2C%20J.%20A.%20P.%2C%20Hu%2C%20S.%20X.%2C%20White%2C%20A.%20J.%2C%20Collins%2C%20L.%20A.%2C%20Nichols%2C%20K.%2C%20Neumayer%2C%20P.%2C%20%26%23×2026%3B%20Volpe%2C%20L.%20%282022%29.%20Proton%20stopping%20measurements%20at%20low%20velocity%20in%20warm%20dense%20carbon.%20%26lt%3Bi%26gt%3BNature%20Communications%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B13%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%202893.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-022-30472-8%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-022-30472-8%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Proton%20stopping%20measurements%20at%20low%20velocity%20in%20warm%20dense%20carbon%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Malko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%22%2C%22lastName%22%3A%22Cayzac%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Ospina-Boh%5Cu00f3rquez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Bhutwala%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bailly-Grandvaux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22McGuffey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Fedosejevs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22X.%22%2C%22lastName%22%3A%22Vaisseau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22An.%22%2C%22lastName%22%3A%22Tauschwitz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20I.%22%2C%22lastName%22%3A%22Api%5Cu00f1aniz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22De%20Luis%20Blanco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Gatti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Huault%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20A.%20Perez%22%2C%22lastName%22%3A%22Hernandez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20X.%22%2C%22lastName%22%3A%22Hu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20J.%22%2C%22lastName%22%3A%22White%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20A.%22%2C%22lastName%22%3A%22Collins%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Nichols%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Neumayer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Faussurier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Vorberger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Prestopino%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Verona%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20J.%22%2C%22lastName%22%3A%22Santos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Batani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20N.%22%2C%22lastName%22%3A%22Beg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Roso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Volpe%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Ion%20stopping%20in%20warm%20dense%20matter%20is%20a%20process%20of%20fundamental%20importance%20for%20the%20understanding%20of%20the%20properties%20of%20dense%20plasmas%2C%20the%20realization%20and%20the%20interpretation%20of%20experiments%20involving%20ion-beam-heated%20warm%20dense%20matter%20samples%2C%20and%20for%20inertial%20confinement%20fusion%20research.%20The%20theoretical%20description%20of%20the%20ion%20stopping%20power%20in%20warm%20dense%20matter%20is%20difficult%20notably%20due%20to%20electron%20coupling%20and%20degeneracy%2C%20and%20measurements%20are%20still%20largely%20missing.%20In%20particular%2C%20the%20low-velocity%20stopping%20range%2C%20that%20features%20the%20largest%20modelling%20uncertainties%2C%20remains%20virtually%20unexplored.%20Here%2C%20we%20report%20proton%20energy-loss%20measurements%20in%20warm%20dense%20plasma%20at%20unprecedented%20low%20projectile%20velocities.%20Our%20energy-loss%20data%2C%20combined%20with%20a%20precise%20target%20characterization%20based%20on%20plasma-emission%20measurements%20using%20two%20independent%20spectroscopy%20diagnostics%2C%20demonstrate%20a%20significant%20deviation%20of%20the%20stopping%20power%20from%20classical%20models%20in%20this%20regime.%20In%20particular%2C%20we%20show%20that%20our%20results%20are%20in%20closest%20agreement%20with%20recent%20first-principles%20simulations%20based%20on%20time-dependent%20density%20functional%20theory.%22%2C%22date%22%3A%222022-05-24%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-022-30472-8%22%2C%22ISSN%22%3A%222041-1723%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41467-022-30472-8%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A15Z%22%7D%7D%2C%7B%22key%22%3A%22EN7W4SU7%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Marco%20et%20al.%22%2C%22parsedDate%22%3A%222022-12-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BMarco%2C%20D.%2C%20S%26%23xE1%3Bnchez-L%26%23xF3%3Bpez%2C%20M.%20D.%20M.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20%26amp%3B%20Moreno%2C%20I.%20%282022%29.%20Extending%20the%20degree%20of%20polarization%20concept%20to%20higher-order%20and%20orbital%20angular%20momentum%20Poincar%26%23xE9%3B%20spheres.%20%26lt%3Bi%26gt%3BJournal%20of%20Optics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B24%26lt%3B%5C%2Fi%26gt%3B%2812%29%2C%20124003.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2040-8986%5C%2Fac99eb%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2040-8986%5C%2Fac99eb%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Extending%20the%20degree%20of%20polarization%20concept%20to%20higher-order%20and%20orbital%20angular%20momentum%20Poincar%5Cu00e9%20spheres%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Marco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mar%5Cu00eda%20Del%20Mar%22%2C%22lastName%22%3A%22S%5Cu00e1nchez-L%5Cu00f3pez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ignacio%22%2C%22lastName%22%3A%22Moreno%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20this%20work%2C%20the%20density%20matrix%20formalism%20that%20describes%20any%20standard%20polarization%20state%20%28fully%20or%20partially%20polarized%29%20is%20applied%20to%20describe%20vector%20beams%20and%20spatial%20modes%20with%20orbital%20angular%20momentum%20%28OAM%29.%20Within%20this%20framework%2C%20we%20provide%20a%20comprehensive%20description%20of%20the%20mapping%20between%20the%20corresponding%20Poincar%5Cu00e9%20spheres%20%28PSs%29%3B%20namely%3A%20the%20polarization%20PS%2C%20the%20higher-order%20PS%20%28HOPS%29%20and%20the%20orbital%20angular%20momentum%20PS%20%28OAMPS%29.%20Whereas%20previous%20works%20focus%20on%20states%20located%20on%20the%20surface%20of%20these%20spheres%2C%20here%20we%20study%20vector%20and%20scalar%20modes%20lying%20inside%20the%20corresponding%20PS.%20We%20show%20that%20they%20can%20be%20obtained%20as%20the%20incoherent%20superposition%20of%20two%20orthogonal%20vector%20%28or%20scalar%29%20modes%20lying%20on%20the%20corresponding%20sphere%20surface.%20The%20degree%20of%20polarization%20%28DoP%29%20of%20a%20classical%20polarization%20state%20is%20thus%20extended%20to%20vector%20beams%20and%20OAM%20modes.%20Experimental%20results%20validate%20the%20theoretical%20physical%20interpretation%2C%20where%20we%20used%20a%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20q%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-plate%20to%20map%20any%20state%20in%20the%20polarization%20PS%20onto%20the%20HOPS%2C%20and%20a%20linear%20polarizer%20to%20finally%20project%20onto%20the%20OAMPS.%20Three%20input%20states%20to%20such%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20q%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-plate-polarizer%20system%20are%20considered%3A%20totally%20unpolarized%2C%20partially%20polarized%2C%20and%20fully%20polarized%20light.%20For%20that%20purpose%2C%20we%20design%20a%20new%20polarization%20state%20generator%2C%20based%20on%20two%20geometric%20phase%20gratings%20and%20a%20randomly%20polarized%20laser%2C%20which%20generates%20partially%20polarized%20light%20in%20an%20efficient%20and%20controlled%20way.%20We%20believe%20that%20the%20extension%20of%20the%20DoP%20concept%20to%20vector%20and%20OAM%20beams%20introduces%20a%20degree%20of%20freedom%20to%20describe%20spatially%20polarization%20and%20phase%20variant%20light%20beams.%22%2C%22date%22%3A%222022-12-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F2040-8986%5C%2Fac99eb%22%2C%22ISSN%22%3A%222040-8978%2C%202040-8986%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F2040-8986%5C%2Fac99eb%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A30Z%22%7D%7D%2C%7B%22key%22%3A%226LIGHRUY%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mousavi%20et%20al.%22%2C%22parsedDate%22%3A%222022-12-23%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BMousavi%2C%20S.%20F.%2C%20Liu%2C%20Y.-P.%2C%20D%26%23×2019%3BAcunto%2C%20G.%2C%20Troian%2C%20A.%2C%20Caridad%2C%20J.%20M.%2C%20Niu%2C%20Y.%2C%20Zhu%2C%20L.%2C%20Jash%2C%20A.%2C%20Flodgren%2C%20V.%2C%20Lehmann%2C%20S.%2C%20Dick%2C%20K.%20A.%2C%20Zakharov%2C%20A.%2C%20Timm%2C%20R.%2C%20%26amp%3B%20Mikkelsen%2C%20A.%20%282022%29.%20Atomic%20Hydrogen%20Annealing%20of%20Graphene%20on%20InAs%20Surfaces%20and%20Nanowires%3A%20Interface%20and%20Morphology%20Control%20for%20Optoelectronics%20and%20Quantum%20Technologies.%20%26lt%3Bi%26gt%3BACS%20Applied%20Nano%20Materials%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B5%26lt%3B%5C%2Fi%26gt%3B%2812%29%2C%2017919%26%23×2013%3B17927.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsanm.2c03891%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsanm.2c03891%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Atomic%20Hydrogen%20Annealing%20of%20Graphene%20on%20InAs%20Surfaces%20and%20Nanowires%3A%20Interface%20and%20Morphology%20Control%20for%20Optoelectronics%20and%20Quantum%20Technologies%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20Fatemeh%22%2C%22lastName%22%3A%22Mousavi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yen-Po%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giulio%22%2C%22lastName%22%3A%22D%5Cu2019Acunto%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrea%22%2C%22lastName%22%3A%22Troian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M.%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuran%22%2C%22lastName%22%3A%22Niu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lin%22%2C%22lastName%22%3A%22Zhu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Asmita%22%2C%22lastName%22%3A%22Jash%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vidar%22%2C%22lastName%22%3A%22Flodgren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Lehmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kimberly%20A.%22%2C%22lastName%22%3A%22Dick%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexei%22%2C%22lastName%22%3A%22Zakharov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rainer%22%2C%22lastName%22%3A%22Timm%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anders%22%2C%22lastName%22%3A%22Mikkelsen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-12-23%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsanm.2c03891%22%2C%22ISSN%22%3A%222574-0970%2C%202574-0970%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsanm.2c03891%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A35Z%22%7D%7D%2C%7B%22key%22%3A%22ZLZCLXSC%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ortiz-Membrado%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BOrtiz-Membrado%2C%20L.%2C%20Liu%2C%20C.%2C%20Prada-Rodrigo%2C%20J.%2C%20Jim%26%23xE9%3Bnez-Piqu%26%23xE9%3B%2C%20E.%2C%20Lin%2C%20L.%20L.%2C%20Moreno%2C%20P.%2C%20Wang%2C%20M.%20S.%2C%20%26amp%3B%20Llanes%2C%20L.%20%282022%29.%20Assessment%20of%20fracture%20toughness%20of%20cemented%20carbides%20by%20using%20a%20shallow%20notch%20produced%20by%20ultrashort%20pulsed%20laser%20ablation%2C%20and%20a%20comparative%20study%20with%20tests%20employing%20precracked%20specimens.%20%26lt%3Bi%26gt%3BInternational%20Journal%20of%20Refractory%20Metals%20and%20Hard%20Materials%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B108%26lt%3B%5C%2Fi%26gt%3B%2C%20105949.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ijrmhm.2022.105949%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ijrmhm.2022.105949%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Assessment%20of%20fracture%20toughness%20of%20cemented%20carbides%20by%20using%20a%20shallow%20notch%20produced%20by%20ultrashort%20pulsed%20laser%20ablation%2C%20and%20a%20comparative%20study%20with%20tests%20employing%20precracked%20specimens%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Ortiz-Membrado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Prada-Rodrigo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Jim%5Cu00e9nez-Piqu%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.L.%22%2C%22lastName%22%3A%22Lin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Moreno%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.S.%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Llanes%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2211%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.ijrmhm.2022.105949%22%2C%22ISSN%22%3A%2202634368%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0263436822001731%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A00Z%22%7D%7D%2C%7B%22key%22%3A%22ZKABTDKH%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Osuna%20Ruiz%20et%20al.%22%2C%22parsedDate%22%3A%222022-09-05%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BOsuna%20Ruiz%2C%20D.%2C%20Alejos%2C%20O.%2C%20Raposo%2C%20V.%2C%20%26amp%3B%20Mart%26%23xED%3Bnez%2C%20E.%20%282022%29.%20Geometrical%20design%20for%20pure%20current-driven%20domain%20wall%20nucleation%20and%20shifting.%20%26lt%3Bi%26gt%3BApplied%20Physics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B121%26lt%3B%5C%2Fi%26gt%3B%2810%29%2C%20102403.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0106689%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0106689%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Geometrical%20design%20for%20pure%20current-driven%20domain%20wall%20nucleation%20and%20shifting%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Osuna%20Ruiz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Alejos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Mart%5Cu00ednez%22%7D%5D%2C%22abstractNote%22%3A%22Nucleation%20of%20domain%20walls%20by%20current-driving%20a%20single%20domain%20wall%2C%20confined%20to%20the%20junction%20area%20of%20two%20symmetrical%20strips%2C%20is%20investigated%20using%20systematic%20micromagnetic%20simulations.%20Secondary%20domain%20walls%20%28equivalently%2C%20bits%20encoded%20in%20domains%29%20are%20simultaneously%20nucleated%20and%20driven%20by%20alternatively%20applying%20current%20pulses%20between%20two%20terminals%20in%20the%20structure.%20Simulations%20show%20that%20nanosecond-duration%20current%20pulses%20nucleate%20and%20drive%20series%20of%20robust%20up%5C%2Fdown%20domains%20even%20under%20realistic%20conditions.%20These%20results%20demonstrate%20a%20technique%20for%20sequentially%20nucleating%20and%20shifting%20domain%20walls%20without%20using%20attached%20external%20%5Cu201cbit%20lines%2C%5Cu201d%20fields%2C%20or%20modifying%20the%20ferromagnetic%20strip.%22%2C%22date%22%3A%222022-09-05%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0106689%22%2C%22ISSN%22%3A%220003-6951%2C%201077-3118%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fapl%5C%2Farticle%5C%2F121%5C%2F10%5C%2F102403%5C%2F2834223%5C%2FGeometrical-design-for-pure-current-driven-domain%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A07Z%22%7D%7D%2C%7B%22key%22%3A%22HKRJ74NV%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Pandey%20et%20al.%22%2C%22parsedDate%22%3A%222022-03-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BPandey%2C%20A.%20K.%2C%20De%20Las%20Heras%2C%20A.%2C%20Larrieu%2C%20T.%2C%20San%20Rom%26%23xE1%3Bn%2C%20J.%2C%20Serrano%2C%20J.%2C%20Plaja%2C%20L.%2C%20Baynard%2C%20E.%2C%20Pittman%2C%20M.%2C%20Dovillaire%2C%20G.%2C%20Kazamias%2C%20S.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20%26amp%3B%20Guilbaud%2C%20O.%20%282022%29.%20Characterization%20of%20Extreme%20Ultraviolet%20Vortex%20Beams%20with%20a%20Very%20High%20Topological%20Charge.%20%26lt%3Bi%26gt%3BACS%20Photonics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B9%26lt%3B%5C%2Fi%26gt%3B%283%29%2C%20944%26%23×2013%3B951.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsphotonics.1c01768%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsphotonics.1c01768%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Characterization%20of%20Extreme%20Ultraviolet%20Vortex%20Beams%20with%20a%20Very%20High%20Topological%20Charge%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alok%20Kumar%22%2C%22lastName%22%3A%22Pandey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alba%22%2C%22lastName%22%3A%22De%20Las%20Heras%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tanguy%22%2C%22lastName%22%3A%22Larrieu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%22%2C%22lastName%22%3A%22San%20Rom%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%22%2C%22lastName%22%3A%22Serrano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elsa%22%2C%22lastName%22%3A%22Baynard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Moana%22%2C%22lastName%22%3A%22Pittman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Dovillaire%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophie%22%2C%22lastName%22%3A%22Kazamias%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olivier%22%2C%22lastName%22%3A%22Guilbaud%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-03-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsphotonics.1c01768%22%2C%22ISSN%22%3A%222330-4022%2C%202330-4022%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsphotonics.1c01768%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A03Z%22%7D%7D%2C%7B%22key%22%3A%225GKUR9DZ%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Pisarczyk%20et%20al.%22%2C%22parsedDate%22%3A%222022-11-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BPisarczyk%2C%20T.%2C%20Renner%2C%20O.%2C%20Dudzak%2C%20R.%2C%20Chodukowski%2C%20T.%2C%20Rusiniak%2C%20Z.%2C%20Domanski%2C%20J.%2C%20Badziak%2C%20J.%2C%20Dostal%2C%20J.%2C%20Krupka%2C%20M.%2C%20Singh%2C%20S.%2C%20Klir%2C%20D.%2C%20Ehret%2C%20M.%2C%20Gajdos%2C%20P.%2C%20Zaras-Szyd%26%23×142%3Bowska%2C%20A.%2C%20Rosinski%2C%20M.%2C%20Tch%26%23xF3%3Brz%2C%20P.%2C%20Szymanski%2C%20M.%2C%20Krasa%2C%20J.%2C%20Burian%2C%20T.%2C%20%26%23×2026%3B%20Juha%2C%20L.%20%282022%29.%20Influence%20of%20the%20magnetic%20field%20on%20properties%20of%20hot%20electron%20emission%20from%20ablative%20plasma%20produced%20at%20laser%20irradiation%20of%20a%20disc-coil%20target.%20%26lt%3Bi%26gt%3BPlasma%20Physics%20and%20Controlled%20Fusion%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B64%26lt%3B%5C%2Fi%26gt%3B%2811%29%2C%20115012.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6587%5C%2Fac95c4%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6587%5C%2Fac95c4%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Influence%20of%20the%20magnetic%20field%20on%20properties%20of%20hot%20electron%20emission%20from%20ablative%20plasma%20produced%20at%20laser%20irradiation%20of%20a%20disc-coil%20target%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T%22%2C%22lastName%22%3A%22Pisarczyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O%22%2C%22lastName%22%3A%22Renner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R%22%2C%22lastName%22%3A%22Dudzak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T%22%2C%22lastName%22%3A%22Chodukowski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z%22%2C%22lastName%22%3A%22Rusiniak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%22%2C%22lastName%22%3A%22Domanski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%22%2C%22lastName%22%3A%22Badziak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%22%2C%22lastName%22%3A%22Dostal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Krupka%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S%22%2C%22lastName%22%3A%22Singh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22Klir%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Ehret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Gajdos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A%22%2C%22lastName%22%3A%22Zaras-Szyd%5Cu0142owska%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Rosinski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Tch%5Cu00f3rz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Szymanski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%22%2C%22lastName%22%3A%22Krasa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T%22%2C%22lastName%22%3A%22Burian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Pfeifer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%22%2C%22lastName%22%3A%22Cikhardt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S%22%2C%22lastName%22%3A%22Jelinek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G%22%2C%22lastName%22%3A%22Kocourkova%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22Batani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K%22%2C%22lastName%22%3A%22Batani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%22%2C%22lastName%22%3A%22Santos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C%22%2C%22lastName%22%3A%22Vlachos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V%22%2C%22lastName%22%3A%22Ospina-Boh%5Cu00f3rquez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%22%2C%22lastName%22%3A%22Volpe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S%22%2C%22lastName%22%3A%22Borodziuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Krus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%22%2C%22lastName%22%3A%22Juha%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Optical%20generators%20of%20strong%20magnetic%20fields%20based%20on%20the%20laser-driven-coil%20target%20concept%20are%20considered%20to%20be%20useful%20tools%20for%20studies%20of%20magnetized%20plasmas%20in%20particular%2C%20for%20the%20study%20of%20implosion%20of%20magnetized%20fusion%20targets%20in%20inertial%20fusion%20research%20and%20astrophysical%20applications.%20This%20paper%20presents%20the%20results%20of%20the%20research%20directed%20at%20an%20investigation%20of%20the%20plasma%20properties%20in%20a%20laser-induced%20magnetic%20field.%20In%20the%20experiment%20carried%20out%20on%20the%20kilojoule%20PALS%20laser%20facility%2C%20a%20generator%20of%20the%20magnetic%20field%20was%20a%20disc-coil%20%28DC%29%20target%20composed%20of%20a%20Cu%20disk%20coupled%20to%20a%20single-turn%20coil%20irradiated%20by%20a%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c9%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20laser%20beam%20with%20an%20energy%20of%20500%20J.%20The%20attention%20was%20focused%20on%20examining%20the%20influence%20of%20the%20magnetic%20field%20on%20properties%20of%20the%20hot%20electron%20%28HE%29%20flux%20emitted%20from%20the%20front%20surface%20of%20the%20irradiated%20target.%20The%20three-frame%20complex%20interferometry%20and%20four-frame%20x-ray%20camera%20combined%20with%20the%20measurements%20of%20the%20HE%20population%20and%20energy%20using%20a%20multi-channel%20magnetic%20electron%20spectrometer%20and%202D-resolved%20imaging%20of%20the%20induced%20Cu%20K%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03b1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20line%20emission%20were%20applied%20to%20characterize%20the%20ablative%20plasma%20and%20the%20generated%20particles.%20Based%20on%20the%20measured%20angular%20distributions%20of%20the%20electron%20energy%20spectra%2C%203D%20simulations%20have%20been%20performed%20to%20visualize%20the%20effect%20of%20the%20magnetic%20field%20on%20the%20HE%20flux%20and%20to%20provide%20information%20on%20space-time%20distribution%20of%20the%20electron%20and%20current%20density%20both%20without%20and%20with%20the%20presence%20of%20an%20axial%20magnetic%20field.%20The%20obtained%20results%20confirmed%20the%20possibility%20of%20generating%20magnetic%20fields%20above%205%20T%20using%20the%20proposed%20DC%20target%20design%20as%20well%20as%20the%20significant%20impact%20of%20these%20fields%20on%20properties%20of%20the%20ablative%20plasma%20and%20the%20HE%20emission.%22%2C%22date%22%3A%222022-11-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6587%5C%2Fac95c4%22%2C%22ISSN%22%3A%220741-3335%2C%201361-6587%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6587%5C%2Fac95c4%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A59Z%22%7D%7D%2C%7B%22key%22%3A%22ANRQYE94%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Pizzocchero%20et%20al.%22%2C%22parsedDate%22%3A%222022-07-05%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BPizzocchero%2C%20F.%2C%20Jessen%2C%20B.%20S.%2C%20Gammelgaard%2C%20L.%2C%20Andryieuski%2C%20A.%2C%20Whelan%2C%20P.%20R.%2C%20Shivayogimath%2C%20A.%2C%20Caridad%2C%20J.%20M.%2C%20Kling%2C%20J.%2C%20Petrone%2C%20N.%2C%20Tang%2C%20P.%20T.%2C%20Malureanu%2C%20R.%2C%20Hone%2C%20J.%2C%20Booth%2C%20T.%20J.%2C%20Lavrinenko%2C%20A.%2C%20%26amp%3B%20B%26%23xF8%3Bggild%2C%20P.%20%282022%29.%20Chemical%20Vapor-Deposited%20Graphene%20on%20Ultraflat%20Copper%20Foils%20for%20van%20der%20Waals%20Hetero-Assembly.%20%26lt%3Bi%26gt%3BACS%20Omega%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B7%26lt%3B%5C%2Fi%26gt%3B%2826%29%2C%2022626%26%23×2013%3B22632.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsomega.2c01946%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsomega.2c01946%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Chemical%20Vapor-Deposited%20Graphene%20on%20Ultraflat%20Copper%20Foils%20for%20van%20der%20Waals%20Hetero-Assembly%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Filippo%22%2C%22lastName%22%3A%22Pizzocchero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bjarke%20S.%22%2C%22lastName%22%3A%22Jessen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lene%22%2C%22lastName%22%3A%22Gammelgaard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrei%22%2C%22lastName%22%3A%22Andryieuski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%20R.%22%2C%22lastName%22%3A%22Whelan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Abhay%22%2C%22lastName%22%3A%22Shivayogimath%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M.%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jens%22%2C%22lastName%22%3A%22Kling%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicholas%22%2C%22lastName%22%3A%22Petrone%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20T.%22%2C%22lastName%22%3A%22Tang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Radu%22%2C%22lastName%22%3A%22Malureanu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%22%2C%22lastName%22%3A%22Hone%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20J.%22%2C%22lastName%22%3A%22Booth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrei%22%2C%22lastName%22%3A%22Lavrinenko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22B%5Cu00f8ggild%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-07-05%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsomega.2c01946%22%2C%22ISSN%22%3A%222470-1343%2C%202470-1343%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsomega.2c01946%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A19Z%22%7D%7D%2C%7B%22key%22%3A%22BNVIVCMW%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Puyuelo-Valdes%20et%20al.%22%2C%22parsedDate%22%3A%222022-05-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BPuyuelo-Valdes%2C%20P.%2C%20De%20Luis%2C%20D.%2C%20Hernandez%2C%20J.%2C%20Api%26%23xF1%3Baniz%2C%20J.%20I.%2C%20Curcio%2C%20A.%2C%20Henares%2C%20J.%20L.%2C%20Huault%2C%20M.%2C%20P%26%23xE9%3Brez-Hern%26%23xE1%3Bndez%2C%20J.%20A.%2C%20Roso%2C%20L.%2C%20Gatti%2C%20G.%2C%20%26amp%3B%20Volpe%2C%20L.%20%282022%29.%20Implementation%20of%20a%20thin%2C%20flat%20water%20target%20capable%20of%20high-repetition-rate%20MeV-range%20proton%20acceleration%20in%20a%20high-power%20laser%20at%20the%20CLPU.%20%26lt%3Bi%26gt%3BPlasma%20Physics%20and%20Controlled%20Fusion%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B64%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%20054003.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6587%5C%2Fac5643%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6587%5C%2Fac5643%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Implementation%20of%20a%20thin%2C%20flat%20water%20target%20capable%20of%20high-repetition-rate%20MeV-range%20proton%20acceleration%20in%20a%20high-power%20laser%20at%20the%20CLPU%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Puyuelo-Valdes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22De%20Luis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%22%2C%22lastName%22%3A%22Hernandez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%20I%22%2C%22lastName%22%3A%22Api%5Cu00f1aniz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A%22%2C%22lastName%22%3A%22Curcio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%20L%22%2C%22lastName%22%3A%22Henares%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Huault%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%20A%22%2C%22lastName%22%3A%22P%5Cu00e9rez-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%22%2C%22lastName%22%3A%22Roso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G%22%2C%22lastName%22%3A%22Gatti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%22%2C%22lastName%22%3A%22Volpe%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Fluid%20targets%20are%20attractive%20for%20laser-driven%20ion%20acceleration%20at%20high-repetition-rate%20laser%20facilities.%20In%20particular%2C%20liquid%20targets%20have%20several%20interesting%20features%20since%20they%20can%20regenerate%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20situ%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20are%20debris-free%20%28or%20little%29%20and%20operate%20at%20a%20high%20repetition%20rate.%20Here%2C%20we%20report%20high-repetition-rate%20MeV-range%20proton%20acceleration%20by%20the%20interaction%20of%20the%20VEGA-2%20laser%20system%20with%20a%20micrometer-thick%20water%20sheet%20target%20in%20a%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20high%20vacuum%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2810%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22124%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20mbar%29%20environment.%20The%20water%20target%20was%20running%20continuously%20at%20this%20pressure%20for%204%20h%20and%20more%20than%201000%20shots%20were%20performed.%20Two%20different%20water%20thicknesses%20were%20studied%2C%20and%20we%20measured%20a%20continuous%20proton%20distribution%20with%20energies%20up%20to%203.5%20MeV.%20Experimental%20results%20are%20compared%20with%20the%20literature%20and%20existing%20scaling%20laws.%22%2C%22date%22%3A%222022-05-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6587%5C%2Fac5643%22%2C%22ISSN%22%3A%220741-3335%2C%201361-6587%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6587%5C%2Fac5643%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22Q7RY97PP%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Raposo%20et%20al.%22%2C%22parsedDate%22%3A%222022-03-28%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRaposo%2C%20V.%2C%20Garc%26%23xED%3Ba-S%26%23xE1%3Bnchez%2C%20F.%2C%20Atxitia%2C%20U.%2C%20%26amp%3B%20Mart%26%23xED%3Bnez%2C%20E.%20%282022%29.%20Realistic%20micromagnetic%20description%20of%20all-optical%20ultrafast%20switching%20processes%20in%20ferrimagnetic%20alloys.%20%26lt%3Bi%26gt%3BPhysical%20Review%20B%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B105%26lt%3B%5C%2Fi%26gt%3B%2810%29%2C%20104432.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.105.104432%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.105.104432%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Realistic%20micromagnetic%20description%20of%20all-optical%20ultrafast%20switching%20processes%20in%20ferrimagnetic%20alloys%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Garc%5Cu00eda-S%5Cu00e1nchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22U.%22%2C%22lastName%22%3A%22Atxitia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Mart%5Cu00ednez%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-3-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.105.104432%22%2C%22ISSN%22%3A%222469-9950%2C%202469-9969%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevB.105.104432%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A48Z%22%7D%7D%2C%7B%22key%22%3A%22LJTQDYZR%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rego%20et%20al.%22%2C%22parsedDate%22%3A%222022-02-04%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRego%2C%20L.%2C%20Brooks%2C%20N.%20J.%2C%20Nguyen%2C%20Q.%20L.%20D.%2C%20Rom%26%23xE1%3Bn%2C%20J.%20S.%2C%20Binnie%2C%20I.%2C%20Plaja%2C%20L.%2C%20Kapteyn%2C%20H.%20C.%2C%20Murnane%2C%20M.%20M.%2C%20%26amp%3B%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%20%282022%29.%20Necklace-structured%20high-harmonic%20generation%20for%20low-divergence%2C%20soft%20x-ray%20harmonic%20combs%20with%20tunable%20line%20spacing.%20%26lt%3Bi%26gt%3BScience%20Advances%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B8%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%20eabj7380.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.abj7380%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.abj7380%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Necklace-structured%20high-harmonic%20generation%20for%20low-divergence%2C%20soft%20x-ray%20harmonic%20combs%20with%20tunable%20line%20spacing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%22%2C%22lastName%22%3A%22Rego%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nathan%20J.%22%2C%22lastName%22%3A%22Brooks%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Quynh%20L.%20D.%22%2C%22lastName%22%3A%22Nguyen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%20San%22%2C%22lastName%22%3A%22Rom%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Iona%22%2C%22lastName%22%3A%22Binnie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henry%20C.%22%2C%22lastName%22%3A%22Kapteyn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20M.%22%2C%22lastName%22%3A%22Murnane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%5D%2C%22abstractNote%22%3A%22The%20extreme%20nonlinear%20optical%20process%20of%20high-harmonic%20generation%20%28HHG%29%20makes%20it%20possible%20to%20map%20the%20properties%20of%20a%20laser%20beam%20onto%20a%20radiating%20electron%20wave%20function%20and%2C%20in%20turn%2C%20onto%20the%20emitted%20x-ray%20light.%20Bright%20HHG%20beams%20typically%20emerge%20from%20a%20longitudinal%20phased%20distribution%20of%20atomic-scale%20quantum%20antennae.%20Here%2C%20we%20form%20a%20transverse%20necklace-shaped%20phased%20array%20of%20linearly%20polarized%20HHG%20emitters%2C%20where%20orbital%20angular%20momentum%20conservation%20allows%20us%20to%20tune%20the%20line%20spacing%20and%20divergence%20properties%20of%20extreme%20ultraviolet%20and%20soft%20x-ray%20high-harmonic%20combs.%20The%20on-axis%20HHG%20emission%20has%20extremely%20low%20divergence%2C%20well%20below%20that%20obtained%20when%20using%20Gaussian%20driving%20beams%2C%20which%20further%20decreases%20with%20harmonic%20order.%20This%20work%20provides%20a%20new%20degree%20of%20freedom%20for%20the%20design%20of%20harmonic%20combs%5Cu2014particularly%20in%20the%20soft%20x-ray%20regime%2C%20where%20very%20limited%20options%20are%20available.%20Such%20harmonic%20beams%20can%20enable%20more%20sensitive%20probes%20of%20the%20fastest%20correlated%20charge%20and%20spin%20dynamics%20in%20molecules%2C%20nanoparticles%2C%20and%20materials.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Phased-necklace%20driving%20beams%20enable%20precise%20coherent%20control%20over%20the%20line%20spacing%20and%20divergence%20of%20EUV%5C%2Fsoft%20x-ray%20harmonics.%22%2C%22date%22%3A%222022-02-04%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1126%5C%2Fsciadv.abj7380%22%2C%22ISSN%22%3A%222375-2548%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.science.org%5C%2Fdoi%5C%2F10.1126%5C%2Fsciadv.abj7380%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22E4R3TIHV%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rodr%5Cu00edguez-Beltr%5Cu00e1n%20et%20al.%22%2C%22parsedDate%22%3A%222022-12-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRodr%26%23xED%3Bguez-Beltr%26%23xE1%3Bn%2C%20R.%20I.%2C%20Prada-Rodrigo%2C%20J.%2C%20Crespo%2C%20A.%2C%20Ezquerra%2C%20T.%20A.%2C%20Moreno%2C%20P.%2C%20%26amp%3B%20Rebollar%2C%20E.%20%282022%29.%20Physicochemical%20Modifications%20on%20Thin%20Films%20of%20Poly%28Ethylene%20Terephthalate%29%20and%20Its%20Nanocomposite%20with%20Expanded%20Graphite%20Nanostructured%20by%20Ultraviolet%20and%20Infrared%20Femtosecond%20Laser%20Irradiation.%20%26lt%3Bi%26gt%3BPolymers%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B14%26lt%3B%5C%2Fi%26gt%3B%2823%29%2C%205243.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fpolym14235243%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fpolym14235243%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Physicochemical%20Modifications%20on%20Thin%20Films%20of%20Poly%28Ethylene%20Terephthalate%29%20and%20Its%20Nanocomposite%20with%20Expanded%20Graphite%20Nanostructured%20by%20Ultraviolet%20and%20Infrared%20Femtosecond%20Laser%20Irradiation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ren%5Cu00e9%20I.%22%2C%22lastName%22%3A%22Rodr%5Cu00edguez-Beltr%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%22%2C%22lastName%22%3A%22Prada-Rodrigo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ana%22%2C%22lastName%22%3A%22Crespo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tiberio%20A.%22%2C%22lastName%22%3A%22Ezquerra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pablo%22%2C%22lastName%22%3A%22Moreno%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esther%22%2C%22lastName%22%3A%22Rebollar%22%7D%5D%2C%22abstractNote%22%3A%22In%20this%20work%2C%20the%20formation%20of%20laser-induced%20periodic%20surface%20structures%20%28LIPSS%29%20on%20the%20surfaces%20of%20thin%20films%20of%20poly%28ethylene%20terephthalate%29%20%28PET%29%20and%20PET%20reinforced%20with%20expanded%20graphite%20%28EG%29%20was%20studied.%20Laser%20irradiation%20was%20carried%20out%20by%20ultraviolet%20%28265%20nm%29%20and%20near-infrared%20%28795%20nm%29%20femtosecond%20laser%20pulses%2C%20and%20LIPSS%20were%20formed%20in%20both%20materials.%20In%20all%20cases%2C%20LIPSS%20had%20a%20period%20close%20to%20the%20irradiation%20wavelength%20and%20were%20formed%20parallel%20to%20the%20polarization%20of%20the%20laser%20beam%2C%20although%2C%20in%20the%20case%20of%20UV%20irradiation%2C%20differences%20in%20the%20formation%20range%20were%20observed%20due%20to%20the%20different%20thermal%20properties%20of%20the%20neat%20polymer%20in%20comparison%20to%20the%20composite.%20To%20monitor%20the%20modification%20of%20the%20physicochemical%20properties%20of%20the%20surfaces%20after%20irradiation%20as%20a%20function%20of%20the%20laser%20wavelength%20and%20of%20the%20presence%20of%20the%20filler%2C%20different%20techniques%20were%20used.%20Contact%20angle%20measurements%20were%20carried%20out%20using%20different%20reference%20liquids%20to%20measure%20the%20wettability%20and%20the%20solid%20surface%20free%20energies.%20The%20initially%20hydrophilic%20surfaces%20became%20more%20hydrophilic%20after%20ultraviolet%20irradiation%2C%20while%20they%20evolved%20to%20become%20hydrophobic%20under%20near-infrared%20laser%20irradiation.%20The%20values%20of%20the%20surface%20free%20energy%20components%20showed%20changes%20after%20nanostructuring%2C%20mainly%20in%20the%20polar%20component.%20Additionally%2C%20for%20UV-irradiated%20surfaces%2C%20adhesion%2C%20determined%20by%20the%20colloidal%20probe%20technique%2C%20increased%2C%20while%2C%20for%20NIR%20irradiation%2C%20adhesion%20decreased.%20Finally%2C%20nanomechanical%20properties%20were%20measured%20by%20the%20PeakForce%20Quantitative%20Nanomechanical%20Mapping%20method%2C%20obtaining%20maps%20of%20elastic%20modulus%2C%20adhesion%2C%20and%20deformation.%20The%20results%20showed%20an%20increase%20in%20the%20elastic%20modulus%20in%20the%20PET%5C%2FEG%2C%20confirming%20the%20reinforcing%20action%20of%20the%20EG%20in%20the%20polymer%20matrix.%20Additionally%2C%20an%20increase%20in%20the%20elastic%20modulus%20was%20observed%20after%20LIPSS%20formation.%22%2C%22date%22%3A%222022-12-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fpolym14235243%22%2C%22ISSN%22%3A%222073-4360%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F2073-4360%5C%2F14%5C%2F23%5C%2F5243%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A00Z%22%7D%7D%2C%7B%22key%22%3A%22PAU87ZEJ%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rodr%5Cu00edguez-Garc%5Cu00eda%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRodr%26%23xED%3Bguez-Garc%26%23xED%3Ba%2C%20V.%2C%20Herr%26%23xE1%3Bez%2C%20M.%2C%20Mart%26%23xED%3Bnez%2C%20V.%2C%20%26amp%3B%20Guzman%20De%20Villoria%2C%20R.%20%282022%29.%20Interlaminar%20and%20translaminar%20fracture%20toughness%20of%20Automated%20Manufactured%20Bio-inspired%20CFRP%20laminates.%20%26lt%3Bi%26gt%3BComposites%20Science%20and%20Technology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B219%26lt%3B%5C%2Fi%26gt%3B%2C%20109236.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.compscitech.2021.109236%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.compscitech.2021.109236%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Interlaminar%20and%20translaminar%20fracture%20toughness%20of%20Automated%20Manufactured%20Bio-inspired%20CFRP%20laminates%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ver%5Cu00f3nica%22%2C%22lastName%22%3A%22Rodr%5Cu00edguez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Herr%5Cu00e1ez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vanesa%22%2C%22lastName%22%3A%22Mart%5Cu00ednez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberto%22%2C%22lastName%22%3A%22Guzman%20De%20Villoria%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2203%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.compscitech.2021.109236%22%2C%22ISSN%22%3A%2202663538%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0266353821005923%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A20Z%22%7D%7D%2C%7B%22key%22%3A%22NYDNNJ7E%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Roso%20et%20al.%22%2C%22parsedDate%22%3A%222022-02-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRoso%2C%20L.%2C%20Lera%2C%20R.%2C%20Ravichandran%2C%20S.%2C%20Longman%2C%20A.%2C%20He%2C%20C.%20Z.%2C%20P%26%23xE9%3Brez-Hern%26%23xE1%3Bndez%2C%20J.%20A.%2C%20Api%26%23xF1%3Baniz%2C%20J.%20I.%2C%20Smith%2C%20L.%20D.%2C%20Fedosejevs%2C%20R.%2C%20%26amp%3B%20Hill%2C%20W.%20T.%20%282022%29.%20Towards%20a%20direct%20measurement%20of%20the%20quantum-vacuum%20Lagrangian%20coupling%20coefficients%20using%20two%20counterpropagating%20super-intense%20laser%20pulses.%20%26lt%3Bi%26gt%3BNew%20Journal%20of%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B24%26lt%3B%5C%2Fi%26gt%3B%282%29%2C%20025010.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1367-2630%5C%2Fac51a7%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1367-2630%5C%2Fac51a7%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Towards%20a%20direct%20measurement%20of%20the%20quantum-vacuum%20Lagrangian%20coupling%20coefficients%20using%20two%20counterpropagating%20super-intense%20laser%20pulses%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Roso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberto%22%2C%22lastName%22%3A%22Lera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Smrithan%22%2C%22lastName%22%3A%22Ravichandran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22Longman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Calvin%20Z%22%2C%22lastName%22%3A%22He%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20Antonio%22%2C%22lastName%22%3A%22P%5Cu00e9rez-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jon%20I%22%2C%22lastName%22%3A%22Api%5Cu00f1aniz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucas%20D%22%2C%22lastName%22%3A%22Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Fedosejevs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wendell%20T%22%2C%22lastName%22%3A%22Hill%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20this%20paper%20we%20will%20show%20that%20photon%5Cu2013photon%20collision%20experiments%20using%20extreme%20lasers%20can%20provide%20measurable%20effects%20giving%20fundamental%20information%20about%20the%20essence%20of%20QED%2C%20its%20Lagrangian.%20A%20possible%20scenario%20with%20two%20counterpropagating%20ultra-intense%20lasers%20for%20an%20experiment%20to%20detect%20scattering%20between%20optical%20photons%20is%20analyzed.%20We%20discuss%20the%20importance%20of%20the%20pulse%20widths%20and%20waists%2C%20the%20best%20scenario%20for%20overlapping%20the%20beams%20and%20signal%20detection%2C%20as%20well%20as%20ways%20to%20distinguish%20the%20signal%20from%20the%20noise.%20This%20would%20need%20a%20high-precision%20measurement%2C%20with%20control%20of%20temporal%20jitter%20and%20noise.%20We%20conclude%20that%20such%20experiment%20is%20barely%20feasible%20at%2010%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2023%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0W%5Cu00a0cm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20very%20promising%20at%2010%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2024%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0W%5Cu00a0cm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%22%2C%22date%22%3A%222022-02-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1367-2630%5C%2Fac51a7%22%2C%22ISSN%22%3A%221367-2630%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1367-2630%5C%2Fac51a7%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A10Z%22%7D%7D%2C%7B%22key%22%3A%22ZM6VSSNV%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sala%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSala%2C%20G.%2C%20Lambert%2C%20C.-H.%2C%20Finizio%2C%20S.%2C%20Raposo%2C%20V.%2C%20Krizakova%2C%20V.%2C%20Krishnaswamy%2C%20G.%2C%20Weigand%2C%20M.%2C%20Raabe%2C%20J.%2C%20Rossell%2C%20M.%20D.%2C%20Martinez%2C%20E.%2C%20%26amp%3B%20Gambardella%2C%20P.%20%282022%29.%20Asynchronous%20current-induced%20switching%20of%20rare-earth%20and%20transition-metal%20sublattices%20in%20ferrimagnetic%20alloys.%20%26lt%3Bi%26gt%3BNature%20Materials%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B21%26lt%3B%5C%2Fi%26gt%3B%286%29%2C%20640%26%23×2013%3B646.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41563-022-01248-8%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41563-022-01248-8%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Asynchronous%20current-induced%20switching%20of%20rare-earth%20and%20transition-metal%20sublattices%20in%20ferrimagnetic%20alloys%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giacomo%22%2C%22lastName%22%3A%22Sala%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles-Henri%22%2C%22lastName%22%3A%22Lambert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Simone%22%2C%22lastName%22%3A%22Finizio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Viola%22%2C%22lastName%22%3A%22Krizakova%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gunasheel%22%2C%22lastName%22%3A%22Krishnaswamy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Markus%22%2C%22lastName%22%3A%22Weigand%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00f6rg%22%2C%22lastName%22%3A%22Raabe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marta%20D.%22%2C%22lastName%22%3A%22Rossell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Martinez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pietro%22%2C%22lastName%22%3A%22Gambardella%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2206%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41563-022-01248-8%22%2C%22ISSN%22%3A%221476-1122%2C%201476-4660%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41563-022-01248-8%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A18Z%22%7D%7D%2C%7B%22key%22%3A%22W8IJVCTG%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Salgado-L%5Cu00f3pez%20et%20al.%22%2C%22parsedDate%22%3A%222022-04-22%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSalgado-L%26%23xF3%3Bpez%2C%20C.%2C%20Api%26%23xF1%3Baniz%2C%20J.%20I.%2C%20Henares%2C%20J.%20L.%2C%20P%26%23xE9%3Brez-Hern%26%23xE1%3Bndez%2C%20J.%20A.%2C%20De%20Luis%2C%20D.%2C%20Volpe%2C%20L.%2C%20%26amp%3B%20Gatti%2C%20G.%20%282022%29.%20Angular-Resolved%20Thomson%20Parabola%20Spectrometer%20for%20Laser-Driven%20Ion%20Accelerators.%20%26lt%3Bi%26gt%3BSensors%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B22%26lt%3B%5C%2Fi%26gt%3B%289%29%2C%203239.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fs22093239%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fs22093239%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Angular-Resolved%20Thomson%20Parabola%20Spectrometer%20for%20Laser-Driven%20Ion%20Accelerators%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Salgado-L%5Cu00f3pez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jon%20Imanol%22%2C%22lastName%22%3A%22Api%5Cu00f1aniz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20Luis%22%2C%22lastName%22%3A%22Henares%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20Antonio%22%2C%22lastName%22%3A%22P%5Cu00e9rez-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Diego%22%2C%22lastName%22%3A%22De%20Luis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Volpe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giancarlo%22%2C%22lastName%22%3A%22Gatti%22%7D%5D%2C%22abstractNote%22%3A%22This%20article%20reports%20the%20development%2C%20construction%2C%20and%20experimental%20test%20of%20an%20angle-resolved%20Thomson%20parabola%20%28TP%29%20spectrometer%20for%20laser-accelerated%20multi-MeV%20ion%20beams%20in%20order%20to%20distinguish%20between%20ionic%20species%20with%20different%20charge-to-mass%20ratio.%20High%20repetition%20rate%20%28HHR%29%20compatibility%20is%20guaranteed%20by%20the%20use%20of%20a%20microchannel%20plate%20%28MCP%29%20as%20active%20particle%20detector.%20The%20angular%20resolving%20power%2C%20which%20is%20achieved%20due%20to%20an%20array%20of%20entrance%20pinholes%2C%20can%20be%20simply%20adjusted%20by%20modifying%20the%20geometry%20of%20the%20experiment%20and%5C%2For%20the%20pinhole%20array%20itself.%20The%20analysis%20procedure%20allows%20for%20different%20ion%20traces%20to%20cross%20on%20the%20detector%20plane%2C%20which%20greatly%20enhances%20the%20flexibility%20and%20capabilities%20of%20the%20detector.%20A%20full%20characterization%20of%20the%20TP%20magnetic%20field%20is%20implemented%20into%20a%20relativistic%20code%20developed%20for%20the%20trajectory%20calculation%20of%20each%20pinhole%20beamlet.%20We%20describe%20the%20first%20test%20of%20the%20spectrometer%20at%20the%201PW%20VEGA%203%20laser%20facility%20at%20CLPU%2C%20Salamanca%20%28Spain%29%2C%20where%20up%20to%2015MeV%20protons%20and%20carbon%20ions%20from%20a%203%5Cu03bcm%20laser-irradiated%20Al%20foil%20are%20detected.%22%2C%22date%22%3A%222022-04-22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fs22093239%22%2C%22ISSN%22%3A%221424-8220%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F1424-8220%5C%2F22%5C%2F9%5C%2F3239%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A32Z%22%7D%7D%2C%7B%22key%22%3A%22VT7YTPJ6%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Shuai%20et%20al.%22%2C%22parsedDate%22%3A%222022-06-20%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BShuai%2C%20J.%2C%20Ali%2C%20M.%2C%20Lopez-Diaz%2C%20L.%2C%20Cunningham%2C%20J.%20E.%2C%20%26amp%3B%20Moore%2C%20T.%20A.%20%282022%29.%20Local%20anisotropy%20control%20of%20Pt%5C%2FCo%5C%2FIr%20thin%20film%20with%20perpendicular%20magnetic%20anisotropy%20by%20surface%20acoustic%20waves.%20%26lt%3Bi%26gt%3BApplied%20Physics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B120%26lt%3B%5C%2Fi%26gt%3B%2825%29%2C%20252402.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0097172%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0097172%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Local%20anisotropy%20control%20of%20Pt%5C%2FCo%5C%2FIr%20thin%20film%20with%20perpendicular%20magnetic%20anisotropy%20by%20surface%20acoustic%20waves%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jintao%22%2C%22lastName%22%3A%22Shuai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mannan%22%2C%22lastName%22%3A%22Ali%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Lopez-Diaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20E.%22%2C%22lastName%22%3A%22Cunningham%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20A.%22%2C%22lastName%22%3A%22Moore%22%7D%5D%2C%22abstractNote%22%3A%22The%20control%20of%20perpendicular%20magnetic%20anisotropy%20%28PMA%29%20in%20thin%20films%20by%20strain%20has%20considerable%20potential%20for%20energy-efficient%20information%20storage%20and%20data%20processing.%20Here%2C%20we%20report%20on%20the%20control%20of%20PMA%20in%20Pt%5C%2FCo%5C%2FIr%20thin%20films%20by%20the%20strain%20produced%20by%20standing%20surface%20acoustic%20waves%20%28SAWs%29.%20A%20significant%20%28%5Cu223c21%25%29%20coercivity%20reduction%20%28from%204.80%5Cu2009%5Cu00b1%5Cu20090.03%20to%203.80%5Cu2009%5Cu00b1%5Cu20090.02%5Cu2009mT%29%20can%20be%20obtained%20by%20applying%20a%20standing%20SAW%20with%20a%20center%20frequency%20of%2093.35%5Cu2009MHz.%20Furthermore%2C%20the%20standing%20SAWs%20induce%20a%20greater-than%2011-fold%20increase%20in%20magnetization%20reversal%20speed%20%28from%20168%5Cu2009%5Cu00b1%5Cu20093%20to%20up%20to%202100%5Cu2009%5Cu00b1%5Cu200980%20%5Cu03bcm2%5C%2Fs%29%20at%203.2%5Cu2009mT%20for%20a%20total%20applied%20RF%20power%20of%2022.5%5Cu2009dBm.%20During%20application%20of%20SAWs%2C%20wide-field%20Kerr%20microscopy%20reveals%20the%20formation%20of%20domains%20in%20stripes%20with%20a%20periodicity%20of%20half%20of%20the%20SAW%20wavelength.%20Micromagnetic%20simulations%20indicate%20that%20the%20anti-nodes%20of%20the%20standing%20SAW%20locally%20lower%20the%20anisotropy%20due%20to%20the%20magneto-elastic%20coupling%20effect%2C%20decreasing%20domain%20nucleation%20field%20while%20promoting%20magnetization%20reversal.%20Our%20study%20suggests%20the%20possibility%20of%20remote%20and%20energy-efficient%20control%20of%20magnetization%20switching%20using%20SAWs.%22%2C%22date%22%3A%222022-06-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0097172%22%2C%22ISSN%22%3A%220003-6951%2C%201077-3118%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fapl%5C%2Farticle%5C%2F120%5C%2F25%5C%2F252402%5C%2F2833706%5C%2FLocal-anisotropy-control-of-Pt-Co-Ir-thin-film%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A07Z%22%7D%7D%2C%7B%22key%22%3A%2278GEK4TX%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Van%20Der%20Jagt%20et%20al.%22%2C%22parsedDate%22%3A%222022-11-22%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BVan%20Der%20Jagt%2C%20J.%20W.%2C%20Jeudy%2C%20V.%2C%20Thiaville%2C%20A.%2C%20Sall%2C%20M.%2C%20Vernier%2C%20N.%2C%20Herrera%20Diez%2C%20L.%2C%20Belmeguenai%2C%20M.%2C%20Roussign%26%23xE9%3B%2C%20Y.%2C%20Ch%26%23xE9%3Brif%2C%20S.%20M.%2C%20Fattouhi%2C%20M.%2C%20Lopez-Diaz%2C%20L.%2C%20Lamperti%2C%20A.%2C%20Juge%2C%20R.%2C%20%26amp%3B%20Ravelosona%2C%20D.%20%282022%29.%20Revealing%20Nanoscale%20Disorder%20in%20W%20%5C%2F%20Co%20-%20Fe%20-%20B%20%5C%2F%20MgO%20Ultrathin%20Films%20Using%20Domain-Wall%20Motion.%20%26lt%3Bi%26gt%3BPhysical%20Review%20Applied%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B18%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%20054072.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.18.054072%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.18.054072%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Revealing%20Nanoscale%20Disorder%20in%20W%20%5C%2F%20Co%20-%20Fe%20-%20B%20%5C%2F%20MgO%20Ultrathin%20Films%20Using%20Domain-Wall%20Motion%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Johannes%20W.%22%2C%22lastName%22%3A%22Van%20Der%20Jagt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Jeudy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andr%5Cu00e9%22%2C%22lastName%22%3A%22Thiaville%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mamour%22%2C%22lastName%22%3A%22Sall%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%22%2C%22lastName%22%3A%22Vernier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Liza%22%2C%22lastName%22%3A%22Herrera%20Diez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohamed%22%2C%22lastName%22%3A%22Belmeguenai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Roussign%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Salim%20M.%22%2C%22lastName%22%3A%22Ch%5Cu00e9rif%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mouad%22%2C%22lastName%22%3A%22Fattouhi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Lopez-Diaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessio%22%2C%22lastName%22%3A%22Lamperti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rom%5Cu00e9o%22%2C%22lastName%22%3A%22Juge%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dafin%5Cu00e9%22%2C%22lastName%22%3A%22Ravelosona%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-11-22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.18.054072%22%2C%22ISSN%22%3A%222331-7019%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevApplied.18.054072%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22KQPMW6T7%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Weissenbilder%20et%20al.%22%2C%22parsedDate%22%3A%222022-10-13%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BWeissenbilder%2C%20R.%2C%20Carlstr%26%23xF6%3Bm%2C%20S.%2C%20Rego%2C%20L.%2C%20Guo%2C%20C.%2C%20Heyl%2C%20C.%20M.%2C%20Smorenburg%2C%20P.%2C%20Constant%2C%20E.%2C%20Arnold%2C%20C.%20L.%2C%20%26amp%3B%20L%26%23×2019%3BHuillier%2C%20A.%20%282022%29.%20How%20to%20optimize%20high-order%20harmonic%20generation%20in%20gases.%20%26lt%3Bi%26gt%3BNature%20Reviews%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B4%26lt%3B%5C%2Fi%26gt%3B%2811%29%2C%20713%26%23×2013%3B722.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs42254-022-00522-7%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs42254-022-00522-7%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22How%20to%20optimize%20high-order%20harmonic%20generation%20in%20gases%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Weissenbilder%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Carlstr%5Cu00f6m%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Rego%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Guo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20M.%22%2C%22lastName%22%3A%22Heyl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Smorenburg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Constant%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20L.%22%2C%22lastName%22%3A%22Arnold%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22L%5Cu2019Huillier%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-10-13%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs42254-022-00522-7%22%2C%22ISSN%22%3A%222522-5820%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs42254-022-00522-7%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A52Z%22%7D%7D%5D%7D
Aymerich, M., Vázquez De Aldana, J. R., Canteli, D., Molpeceres, C., Alvarez, E., Almengló, C., & Flores-Arias, M. T. (2022). Soda-lime glass as biocompatible material to fabricate capillary-model devices by laser technologies. Optical Materials Express, 12(5), 1790. https://doi.org/10.1364/OME.447286
Bae, J. E., Mateos, X., Aguiló, M., Díaz, F., Ajates, J. G., Romero, C., Vázquez De Aldana, J. R., & Rotermund, F. (2022). Multi-gigahertz mode-locked femtosecond Yb:KLuW waveguide lasers. Photonics Research, 10(11), 2584. https://doi.org/10.1364/PRJ.471688
Bolaños, S., Sladkov, A., Smets, R., Chen, S. N., Grisollet, A., Filippov, E., Henares, J.-L., Nastasa, V., Pikuz, S., Riquier, R., Safronova, M., Severin, A., Starodubtsev, M., & Fuchs, J. (2022). Laboratory evidence of magnetic reconnection hampered in obliquely interacting flux tubes. Nature Communications, 13(1), 6426. https://doi.org/10.1038/s41467-022-33813-9
Boyero-García, R., García-Cabrera, A., Zurrón-Cifuentes, O., Hernández-García, C., & Plaja, L. (2022). Non-classical high harmonic generation in graphene driven by linearly-polarized laser pulses. Optics Express, 30(9), 15546. https://doi.org/10.1364/OE.452201
Boyero-García, R., García-Cabrera, A., Zurrón-Cifuentes, O., Hernández-García, C., & Plaja, L. (2022). High-order harmonic spectroscopy of polycrystalline graphene. Optical Materials Express, 12(9), 3543. https://doi.org/10.1364/OME.468125
Brigner, W. H., Hassan, N., Hu, X., Bennett, C. H., Garcia-Sanchez, F., Cui, C., Velasquez, A., Marinella, M. J., Incorvia, J. A. C., & Friedman, J. S. (2022). Domain Wall Leaky Integrate-and-Fire Neurons With Shape-Based Configurable Activation Functions. IEEE Transactions on Electron Devices, 69(5), 2353–2359. https://doi.org/10.1109/TED.2022.3159508
Carlson, D., Tanksalvala, M., Morrill, D., Roman, J. S., Jarque, E. C., Kapteyn, H. C., Murnane, M. M., & Hemmer, M. (2022). Nonlinear post-compression in multi-pass cells in the mid-IR region using bulk materials. Optics Letters, 47(20), 5289. https://doi.org/10.1364/OL.471458
Curcio, A., & Gatti, G. (2022). Time-domain study of the synchrotron radiation emitted from electron beams in plasma focusing channels. Physical Review E, 105(2), 025201. https://doi.org/10.1103/PhysRevE.105.025201
Curcio, A., Ehret, M., Perez-Hernandez, J. A., & Gatti, G. (2022). Observation of tunable parametric x-ray radiation emitted by laser-plasma electron beams interacting with crystalline structures. Physical Review Accelerators and Beams, 25(6), 063403. https://doi.org/10.1103/PhysRevAccelBeams.25.063403
De Las Heras, A., Pandey, A. K., San Román, J., Serrano, J., Baynard, E., Dovillaire, G., Pittman, M., Durfee, C. G., Plaja, L., Kazamias, S., Guilbaud, O., & Hernández-García, C. (2022). Extreme-ultraviolet vector-vortex beams from high harmonic generation. Optica, 9(1), 71. https://doi.org/10.1364/OPTICA.442304
Fattouhi, M., Garcia-Sanchez, F., Yanes, R., Raposo, V., Martinez, E., & Lopez-Diaz, L. (2022). Absence of Walker Breakdown in the Dynamics of Chiral Néel Domain Walls Driven by In-Plane Strain Gradients. Physical Review Applied, 18(4), 044023. https://doi.org/10.1103/PhysRevApplied.18.044023
Fu, Z., Chen, Y., Peng, S., Zhu, B., Li, B., Martín-Hernández, R., Fan, G., Wang, Y., Hernández-García, C., Jin, C., Murnane, M., Kapteyn, H., & Tao, Z. (2022). Extension of the bright high-harmonic photon energy range via nonadiabatic critical phase matching. Science Advances, 8(51), eadd7482. https://doi.org/10.1126/sciadv.add7482
Galán, M. F., Conejero Jarque, E., & San Roman, J. (2022). Optimization of pulse self-compression in hollow capillary fibers using decreasing pressure gradients. Optics Express, 30(5), 6755. https://doi.org/10.1364/OE.451264
Hu, X., Walker, B. W., García-Sánchez, F., Edwards, A. J., Zhou, P., Incorvia, J. A. C., Paler, A., Frank, M. P., & Friedman, J. S. (2022). Logical and Physical Reversibility of Conservative Skyrmion Logic. IEEE Magnetics Letters, 13, 1–5. https://doi.org/10.1109/LMAG.2022.3174514
Kalin, J., Sievers, S., Füser, H., Schumacher, H. W., Bieler, M., García-Sánchez, F., Bauer, A., & Pfleiderer, C. (2022). Optically excited spin dynamics of thermally metastable skyrmions in Fe 0.75 Co 0.25 Si. Physical Review B, 106(5), 054430. https://doi.org/10.1103/PhysRevB.106.054430
Liu, H., Jia, Y., & Romero, C. (2022). Editorial: Femtosecond Laser Inscribed Passive and Active Guiding Structures in Transparent Materials. Frontiers in Physics, 10, 875736. https://doi.org/10.3389/fphy.2022.875736
López-Ripa, M., Sola, Í. J., & Alonso, B. (2022). Bulk lateral shearing interferometry for spatiotemporal study of time-varying ultrashort optical vortices. Photonics Research, 10(4), 922. https://doi.org/10.1364/PRJ.448339
Malko, S., Cayzac, W., Ospina-Bohórquez, V., Bhutwala, K., Bailly-Grandvaux, M., McGuffey, C., Fedosejevs, R., Vaisseau, X., Tauschwitz, An., Apiñaniz, J. I., De Luis Blanco, D., Gatti, G., Huault, M., Hernandez, J. A. P., Hu, S. X., White, A. J., Collins, L. A., Nichols, K., Neumayer, P., … Volpe, L. (2022). Proton stopping measurements at low velocity in warm dense carbon. Nature Communications, 13(1), 2893. https://doi.org/10.1038/s41467-022-30472-8
Marco, D., Sánchez-López, M. D. M., Hernández-García, C., & Moreno, I. (2022). Extending the degree of polarization concept to higher-order and orbital angular momentum Poincaré spheres. Journal of Optics, 24(12), 124003. https://doi.org/10.1088/2040-8986/ac99eb
Mousavi, S. F., Liu, Y.-P., D’Acunto, G., Troian, A., Caridad, J. M., Niu, Y., Zhu, L., Jash, A., Flodgren, V., Lehmann, S., Dick, K. A., Zakharov, A., Timm, R., & Mikkelsen, A. (2022). Atomic Hydrogen Annealing of Graphene on InAs Surfaces and Nanowires: Interface and Morphology Control for Optoelectronics and Quantum Technologies. ACS Applied Nano Materials, 5(12), 17919–17927. https://doi.org/10.1021/acsanm.2c03891
Ortiz-Membrado, L., Liu, C., Prada-Rodrigo, J., Jiménez-Piqué, E., Lin, L. L., Moreno, P., Wang, M. S., & Llanes, L. (2022). Assessment of fracture toughness of cemented carbides by using a shallow notch produced by ultrashort pulsed laser ablation, and a comparative study with tests employing precracked specimens. International Journal of Refractory Metals and Hard Materials, 108, 105949. https://doi.org/10.1016/j.ijrmhm.2022.105949
Osuna Ruiz, D., Alejos, O., Raposo, V., & Martínez, E. (2022). Geometrical design for pure current-driven domain wall nucleation and shifting. Applied Physics Letters, 121(10), 102403. https://doi.org/10.1063/5.0106689
Pandey, A. K., De Las Heras, A., Larrieu, T., San Román, J., Serrano, J., Plaja, L., Baynard, E., Pittman, M., Dovillaire, G., Kazamias, S., Hernández-García, C., & Guilbaud, O. (2022). Characterization of Extreme Ultraviolet Vortex Beams with a Very High Topological Charge. ACS Photonics, 9(3), 944–951. https://doi.org/10.1021/acsphotonics.1c01768
Pisarczyk, T., Renner, O., Dudzak, R., Chodukowski, T., Rusiniak, Z., Domanski, J., Badziak, J., Dostal, J., Krupka, M., Singh, S., Klir, D., Ehret, M., Gajdos, P., Zaras-Szydłowska, A., Rosinski, M., Tchórz, P., Szymanski, M., Krasa, J., Burian, T., … Juha, L. (2022). Influence of the magnetic field on properties of hot electron emission from ablative plasma produced at laser irradiation of a disc-coil target. Plasma Physics and Controlled Fusion, 64(11), 115012. https://doi.org/10.1088/1361-6587/ac95c4
Pizzocchero, F., Jessen, B. S., Gammelgaard, L., Andryieuski, A., Whelan, P. R., Shivayogimath, A., Caridad, J. M., Kling, J., Petrone, N., Tang, P. T., Malureanu, R., Hone, J., Booth, T. J., Lavrinenko, A., & Bøggild, P. (2022). Chemical Vapor-Deposited Graphene on Ultraflat Copper Foils for van der Waals Hetero-Assembly. ACS Omega, 7(26), 22626–22632. https://doi.org/10.1021/acsomega.2c01946
Puyuelo-Valdes, P., De Luis, D., Hernandez, J., Apiñaniz, J. I., Curcio, A., Henares, J. L., Huault, M., Pérez-Hernández, J. A., Roso, L., Gatti, G., & Volpe, L. (2022). Implementation of a thin, flat water target capable of high-repetition-rate MeV-range proton acceleration in a high-power laser at the CLPU. Plasma Physics and Controlled Fusion, 64(5), 054003. https://doi.org/10.1088/1361-6587/ac5643
Raposo, V., García-Sánchez, F., Atxitia, U., & Martínez, E. (2022). Realistic micromagnetic description of all-optical ultrafast switching processes in ferrimagnetic alloys. Physical Review B, 105(10), 104432. https://doi.org/10.1103/PhysRevB.105.104432
Rego, L., Brooks, N. J., Nguyen, Q. L. D., Román, J. S., Binnie, I., Plaja, L., Kapteyn, H. C., Murnane, M. M., & Hernández-García, C. (2022). Necklace-structured high-harmonic generation for low-divergence, soft x-ray harmonic combs with tunable line spacing. Science Advances, 8(5), eabj7380. https://doi.org/10.1126/sciadv.abj7380
Rodríguez-Beltrán, R. I., Prada-Rodrigo, J., Crespo, A., Ezquerra, T. A., Moreno, P., & Rebollar, E. (2022). Physicochemical Modifications on Thin Films of Poly(Ethylene Terephthalate) and Its Nanocomposite with Expanded Graphite Nanostructured by Ultraviolet and Infrared Femtosecond Laser Irradiation. Polymers, 14(23), 5243. https://doi.org/10.3390/polym14235243
Rodríguez-García, V., Herráez, M., Martínez, V., & Guzman De Villoria, R. (2022). Interlaminar and translaminar fracture toughness of Automated Manufactured Bio-inspired CFRP laminates. Composites Science and Technology, 219, 109236. https://doi.org/10.1016/j.compscitech.2021.109236
Roso, L., Lera, R., Ravichandran, S., Longman, A., He, C. Z., Pérez-Hernández, J. A., Apiñaniz, J. I., Smith, L. D., Fedosejevs, R., & Hill, W. T. (2022). Towards a direct measurement of the quantum-vacuum Lagrangian coupling coefficients using two counterpropagating super-intense laser pulses. New Journal of Physics, 24(2), 025010. https://doi.org/10.1088/1367-2630/ac51a7
Sala, G., Lambert, C.-H., Finizio, S., Raposo, V., Krizakova, V., Krishnaswamy, G., Weigand, M., Raabe, J., Rossell, M. D., Martinez, E., & Gambardella, P. (2022). Asynchronous current-induced switching of rare-earth and transition-metal sublattices in ferrimagnetic alloys. Nature Materials, 21(6), 640–646. https://doi.org/10.1038/s41563-022-01248-8
Salgado-López, C., Apiñaniz, J. I., Henares, J. L., Pérez-Hernández, J. A., De Luis, D., Volpe, L., & Gatti, G. (2022). Angular-Resolved Thomson Parabola Spectrometer for Laser-Driven Ion Accelerators. Sensors, 22(9), 3239. https://doi.org/10.3390/s22093239
Shuai, J., Ali, M., Lopez-Diaz, L., Cunningham, J. E., & Moore, T. A. (2022). Local anisotropy control of Pt/Co/Ir thin film with perpendicular magnetic anisotropy by surface acoustic waves. Applied Physics Letters, 120(25), 252402. https://doi.org/10.1063/5.0097172
Van Der Jagt, J. W., Jeudy, V., Thiaville, A., Sall, M., Vernier, N., Herrera Diez, L., Belmeguenai, M., Roussigné, Y., Chérif, S. M., Fattouhi, M., Lopez-Diaz, L., Lamperti, A., Juge, R., & Ravelosona, D. (2022). Revealing Nanoscale Disorder in W / Co – Fe – B / MgO Ultrathin Films Using Domain-Wall Motion. Physical Review Applied, 18(5), 054072. https://doi.org/10.1103/PhysRevApplied.18.054072
Weissenbilder, R., Carlström, S., Rego, L., Guo, C., Heyl, C. M., Smorenburg, P., Constant, E., Arnold, C. L., & L’Huillier, A. (2022). How to optimize high-order harmonic generation in gases. Nature Reviews Physics, 4(11), 713–722. https://doi.org/10.1038/s42254-022-00522-7

8111616 N7Z8DZV2 2021 1 apa 50 creator asc 1 7184 https://lumes.usal.es/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22R6VK6E9X%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Api%5Cu00f1aniz%20et%20al.%22%2C%22parsedDate%22%3A%222021-03-25%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BApi%26%23xF1%3Baniz%2C%20J.%20I.%2C%20Malko%2C%20S.%2C%20Fedosejevs%2C%20R.%2C%20Cayzac%2C%20W.%2C%20Vaisseau%2C%20X.%2C%20De%20Luis%2C%20D.%2C%20Gatti%2C%20G.%2C%20McGuffey%2C%20C.%2C%20Bailly-Grandvaux%2C%20M.%2C%20Bhutwala%2C%20K.%2C%20Ospina-Bohorquez%2C%20V.%2C%20Balboa%2C%20J.%2C%20Santos%2C%20J.%20J.%2C%20Batani%2C%20D.%2C%20Beg%2C%20F.%2C%20Roso%2C%20L.%2C%20Perez-Hernandez%2C%20J.%20A.%2C%20%26amp%3B%20Volpe%2C%20L.%20%282021%29.%20A%20quasi-monoenergetic%20short%20time%20duration%20compact%20proton%20source%20for%20probing%20high%20energy%20density%20states%20of%20matter.%20%26lt%3Bi%26gt%3BScientific%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B11%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%206881.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-021-86234-x%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-021-86234-x%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20quasi-monoenergetic%20short%20time%20duration%20compact%20proton%20source%20for%20probing%20high%20energy%20density%20states%20of%20matter%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20I.%22%2C%22lastName%22%3A%22Api%5Cu00f1aniz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Malko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Fedosejevs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%22%2C%22lastName%22%3A%22Cayzac%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22X.%22%2C%22lastName%22%3A%22Vaisseau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22De%20Luis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Gatti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22McGuffey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bailly-Grandvaux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Bhutwala%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Ospina-Bohorquez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Balboa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20J.%22%2C%22lastName%22%3A%22Santos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Batani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Beg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Roso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20A.%22%2C%22lastName%22%3A%22Perez-Hernandez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Volpe%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20We%20report%20on%20the%20development%20of%20a%20highly%20directional%2C%20narrow%20energy%20band%2C%20short%20time%20duration%20proton%20beam%20operating%20at%20high%20repetition%20rate.%20The%20protons%20are%20generated%20with%20an%20ultrashort-pulse%20laser%20interacting%20with%20a%20solid%20target%20and%20converted%20to%20a%20pencil-like%20narrow-band%20beam%20using%20a%20compact%20magnet-based%20energy%20selector.%20We%20experimentally%20demonstrate%20the%20production%20of%20a%20proton%20beam%20with%20an%20energy%20of%20500%20keV%20and%20energy%20spread%20well%20below%2010%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24%24%5C%5C%25%20%24%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%25%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20and%20a%20pulse%20duration%20of%20260%20ps.%20The%20energy%20loss%20of%20this%20beam%20is%20measured%20in%20a%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24%24%5C%5Cupmu%20%24%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03bc%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%20thick%20solid%20Mylar%20target%20and%20found%20to%20be%20in%20good%20agreement%20with%20the%20theoretical%20predictions.%20The%20short%20time%20duration%20of%20the%20proton%20pulse%20makes%20it%20particularly%20well%20suited%20for%20applications%20involving%20the%20probing%20of%20highly%20transient%20plasma%20states%20produced%20in%20laser-matter%20interaction%20experiments.%20This%20proton%20source%20is%20particularly%20relevant%20for%20measurements%20of%20the%20proton%20stopping%20power%20in%20high%20energy%20density%20plasmas%20and%20warm%20dense%20matter.%22%2C%22date%22%3A%222021-03-25%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-021-86234-x%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-021-86234-x%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A37Z%22%7D%7D%2C%7B%22key%22%3A%22Y5W6EUEQ%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Boyero-Garc%5Cu00eda%20et%20al.%22%2C%22parsedDate%22%3A%222021-01-18%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BBoyero-Garc%26%23xED%3Ba%2C%20R.%2C%20Zurr%26%23xF3%3Bn-Cifuentes%2C%20O.%2C%20Plaja%2C%20L.%2C%20%26amp%3B%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%20%282021%29.%20Transverse%20phase%20matching%20of%20high-order%20harmonic%20generation%20in%20single-layer%20graphene.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B29%26lt%3B%5C%2Fi%26gt%3B%282%29%2C%202488.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.412639%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.412639%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Transverse%20phase%20matching%20of%20high-order%20harmonic%20generation%20in%20single-layer%20graphene%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberto%22%2C%22lastName%22%3A%22Boyero-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oscar%22%2C%22lastName%22%3A%22Zurr%5Cu00f3n-Cifuentes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%5D%2C%22abstractNote%22%3A%22The%20efficiency%20of%20high-harmonic%20generation%20%28HHG%29%20from%20a%20macroscopic%20sample%20is%20strongly%20linked%20to%20the%20proper%20phase%20matching%20of%20the%20contributions%20from%20the%20microscopic%20emitters.%20We%20develop%20a%20combined%20micro%2Bmacroscopic%20theoretical%20model%20that%20allows%20us%20to%20distinguish%20the%20relevance%20of%20high-order%20harmonic%20phase%20matching%20in%20single-layer%20graphene.%20For%20a%20Gaussian%20driving%20beam%2C%20our%20simulations%20show%20that%20the%20relevant%20HHG%20emission%20is%20spatially%20constrained%20to%20a%20phase-matched%20ring%20around%20the%20beam%20axis.%20This%20remarkable%20finding%20is%20a%20direct%20consequence%20of%20the%20non-perturbative%20behavior%20of%20HHG%20in%20graphene%5Cu2014whose%20harmonic%20efficiency%20scaling%20is%20similar%20to%20that%20already%20observed%20in%20gases%5Cu2014%20and%20bridges%20the%20gap%20between%20the%20microscopic%20and%20macroscopic%20HHG%20in%20single-layer%20graphene.%22%2C%22date%22%3A%222021-01-18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.412639%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-29-2-2488%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A57Z%22%7D%7D%2C%7B%22key%22%3A%22SSC5EYBP%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Caridad%20et%20al.%22%2C%22parsedDate%22%3A%222021-04-27%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCaridad%2C%20J.%20M.%2C%20Tserkezis%2C%20C.%2C%20Santos%2C%20J.%20E.%2C%20Plochocka%2C%20P.%2C%20Venkatesan%2C%20M.%2C%20Coey%2C%20J.%20M.%20D.%2C%20Mortensen%2C%20N.%20A.%2C%20Rikken%2C%20G.%20L.%20J.%20A.%2C%20%26amp%3B%20Krsti%26%23×107%3B%2C%20V.%20%282021%29.%20Detection%20of%20the%20Faraday%20Chiral%20Anisotropy.%20%26lt%3Bi%26gt%3BPhysical%20Review%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B126%26lt%3B%5C%2Fi%26gt%3B%2817%29%2C%20177401.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.126.177401%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.126.177401%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Detection%20of%20the%20Faraday%20Chiral%20Anisotropy%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M.%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christos%22%2C%22lastName%22%3A%22Tserkezis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jaime%20E.%22%2C%22lastName%22%3A%22Santos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paulina%22%2C%22lastName%22%3A%22Plochocka%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Munuswamy%22%2C%22lastName%22%3A%22Venkatesan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%5Cu2009M.%5Cu2009D.%22%2C%22lastName%22%3A%22Coey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%20Asger%22%2C%22lastName%22%3A%22Mortensen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Geert%20L.%5Cu2009J.%5Cu2009A.%22%2C%22lastName%22%3A%22Rikken%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vojislav%22%2C%22lastName%22%3A%22Krsti%5Cu0107%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222021-4-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevLett.126.177401%22%2C%22ISSN%22%3A%220031-9007%2C%201079-7114%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevLett.126.177401%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A39Z%22%7D%7D%2C%7B%22key%22%3A%22FH7NNBSH%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Castilla%20et%20al.%22%2C%22parsedDate%22%3A%222021-04-21%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCastilla%2C%20D.%2C%20Mu%26%23xF1%3Boz%2C%20M.%2C%20Sinus%26%23xED%3Ba%2C%20M.%2C%20Yanes%2C%20R.%2C%20%26amp%3B%20Prieto%2C%20J.%20L.%20%282021%29.%20Large%20asymmetry%20in%20the%20magnetoresistance%20loops%20of%20ferromagnetic%20nanostrips%20induced%20by%20Surface%20Acoustic%20Waves.%20%26lt%3Bi%26gt%3BScientific%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B11%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%208586.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-021-88113-x%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-021-88113-x%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Large%20asymmetry%20in%20the%20magnetoresistance%20loops%20of%20ferromagnetic%20nanostrips%20induced%20by%20Surface%20Acoustic%20Waves%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Castilla%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manuel%22%2C%22lastName%22%3A%22Mu%5Cu00f1oz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Miguel%22%2C%22lastName%22%3A%22Sinus%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roc%5Cu00edo%22%2C%22lastName%22%3A%22Yanes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20L.%22%2C%22lastName%22%3A%22Prieto%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20In%20this%20work%20we%20show%20that%20Surface%20Acoustic%20Waves%20%28SAW%29%20can%20induce%20a%20very%20large%20asymmetry%20in%20the%20magnetoresistance%20loop%20of%20an%20adjacent%20ferromagnetic%20nanostrip%2C%20making%20it%20look%20as%20if%20it%20had%20exchange%20bias.%20The%20Surface%20Acoustic%20Wave%20induces%20a%20DC%20voltage%20in%20the%20ferromagnetic%20nanostrip.%20For%20measurements%20at%20constant%20current%2C%20this%20DC%20voltage%20makes%20the%20AMR%20loop%20asymmetric.%20In%20a%20series%20of%20different%20electrical%20experiments%2C%20we%20disentangle%20two%20different%20contributions%20to%20the%20induced%20DC%20voltage.%20One%20of%20them%20is%20independent%20on%20the%20external%20magnetic%20field%20and%20it%20is%20likely%20due%20to%20the%20acoustoelectric%20effect.%20A%20second%20contribution%20depends%20on%20the%20external%20magnetic%20field%20and%20it%20is%20a%20rectified%20voltage%20induced%20in%20the%20piezoelectric%20substrate%20as%20a%20response%20to%20the%20magnetization%20dynamics%20in%20the%20magnetostrictive%20nanostrip.%20The%20large%20asymmetry%20in%20the%20magnetoresistance%20loop%20reported%20in%20this%20work%20is%20a%20manifestation%20of%20an%20effective%20transfer%20of%20energy%20from%20the%20SAW%20to%20the%20magnetization%20dynamics%2C%20a%20mechanism%20that%20has%20been%20very%20recently%20appointed%20as%20a%20possible%20mean%20to%20harvest%20energy%20from%20a%20heat%20source.%22%2C%22date%22%3A%222021-04-21%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-021-88113-x%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-021-88113-x%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A35Z%22%7D%7D%2C%7B%22key%22%3A%22RRHBWTDF%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Chang%20et%20al.%22%2C%22parsedDate%22%3A%222021-04-20%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BChang%2C%20K.-Y.%2C%20Huang%2C%20L.-C.%2C%20Asaga%2C%20K.%2C%20Tsai%2C%20M.-S.%2C%20Rego%2C%20L.%2C%20Huang%2C%20P.-C.%2C%20Mashiko%2C%20H.%2C%20Oguri%2C%20K.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20%26amp%3B%20Chen%2C%20M.-C.%20%282021%29.%20High-order%20nonlinear%20dipole%20response%20characterized%20by%20extreme%20ultraviolet%20ellipsometry.%20%26lt%3Bi%26gt%3BOptica%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B8%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20484.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOPTICA.413531%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOPTICA.413531%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22High-order%20nonlinear%20dipole%20response%20characterized%20by%20extreme%20ultraviolet%20ellipsometry%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kuang-Yu%22%2C%22lastName%22%3A%22Chang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Long-Cheng%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Koji%22%2C%22lastName%22%3A%22Asaga%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ming-Shian%22%2C%22lastName%22%3A%22Tsai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%22%2C%22lastName%22%3A%22Rego%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pei-Chi%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hiroki%22%2C%22lastName%22%3A%22Mashiko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katsuya%22%2C%22lastName%22%3A%22Oguri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ming-Chang%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22Polarization%20engineering%20and%20characterization%20of%20coherent%20high-frequency%20radiation%20are%20essential%20to%20investigate%20and%20control%20the%20symmetry%20properties%20of%20light%5Cu2013matter%20interaction%20phenomena%20at%20their%20most%20fundamental%20scales.%20This%20work%20demonstrates%20that%20polarization%20control%20and%20characterization%20of%20high-harmonic%20generation%20provides%20an%20excellent%20ellipsometry%20tool%20that%20can%20fully%20retrieve%20both%20the%20amplitude%20and%20phase%20of%20a%20strong-field-driven%20dipole%20response.%20The%20polarization%20control%20of%20high-harmonic%20generation%20is%20realized%20by%20a%20transient%20nonlinear%20dipole%20grating%20coherently%20induced%20by%20two%20noncollinear%20counterrotating%20laser%20fields.%20By%20adjusting%20the%20ellipticity%20of%20the%20two%20driving%20pulses%20simultaneously%2C%20the%20polarization%20state%20of%20every%20high-harmonic%20order%20can%20be%20tuned%20from%20linear%20to%20highly%20elliptical%2C%20and%20it%20is%20fully%20characterized%20through%20an%20energy-resolved%20extreme%20ultraviolet%20polarimeter.%20From%20the%20analysis%20of%20the%20polarization%20state%2C%20the%20ellipsometry%20indicated%20that%20both%20the%20amplitude%20and%20phase%20of%20the%20high-harmonic%20dipole%20scale%20rapidly%20with%20the%20driving%20laser%20field%20for%20higher-order%20harmonics%2C%20and%2C%20especially%2C%20for%20gases%20with%20a%20small%20ionization%20potential.%20Our%20experimental%20results%20were%20corroborated%20by%20theoretical%20simulations.%20Our%20findings%20revealed%20a%20novel%20high-harmonic%20ellipsometry%20technique%20that%20can%20be%20used%20for%20the%20next%20generation%20of%20high-harmonic%20spectroscopy%20and%20attosecond%20metrology%20studies%20because%20of%20its%20ability%20to%20provide%20single-digit%20attosecond%20accuracy.%20Our%20work%20also%20paves%20the%20way%20to%20precisely%20quantify%20the%20strong-field%20dynamics%20of%20fundamental%20processes%20associated%20with%20the%20transfer%20of%20energy%20and%20angular%20momentum%20between%20electron%5C%2Fspin%20systems%20and%20the%20symmetry-dependent%20properties%20of%20molecules%20and%20materials.%22%2C%22date%22%3A%222021-04-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOPTICA.413531%22%2C%22ISSN%22%3A%222334-2536%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doptica-8-4-484%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A12Z%22%7D%7D%2C%7B%22key%22%3A%22T3MTPYCL%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Cistaro%20et%20al.%22%2C%22parsedDate%22%3A%222021-02-12%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCistaro%2C%20G.%2C%20Plaja%2C%20L.%2C%20Mart%26%23xED%3Bn%2C%20F.%2C%20%26amp%3B%20Pic%26%23xF3%3Bn%2C%20A.%20%282021%29.%20Attosecond%20x-ray%20transient%20absorption%20spectroscopy%20in%20graphene.%20%26lt%3Bi%26gt%3BPhysical%20Review%20Research%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B3%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%20013144.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevResearch.3.013144%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevResearch.3.013144%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Attosecond%20x-ray%20transient%20absorption%20spectroscopy%20in%20graphene%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giovanni%22%2C%22lastName%22%3A%22Cistaro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fernando%22%2C%22lastName%22%3A%22Mart%5Cu00edn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Pic%5Cu00f3n%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222021-2-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevResearch.3.013144%22%2C%22ISSN%22%3A%222643-1564%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevResearch.3.013144%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A09Z%22%7D%7D%2C%7B%22key%22%3A%223NAZYTEP%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Crego%20et%20al.%22%2C%22parsedDate%22%3A%222021-01-18%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCrego%2C%20A.%2C%20Jarque%2C%20E.%20C.%2C%20%26amp%3B%20San%20Roman%2C%20J.%20%282021%29.%20Ultrashort%20visible%20energetic%20pulses%20generated%20by%20nonlinear%20propagation%20of%20necklace%20beams%20in%20capillaries.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B29%26lt%3B%5C%2Fi%26gt%3B%282%29%2C%20929.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.411338%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.411338%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ultrashort%20visible%20energetic%20pulses%20generated%20by%20nonlinear%20propagation%20of%20necklace%20beams%20in%20capillaries%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aurora%22%2C%22lastName%22%3A%22Crego%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Enrique%20Conejero%22%2C%22lastName%22%3A%22Jarque%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%22%2C%22lastName%22%3A%22San%20Roman%22%7D%5D%2C%22abstractNote%22%3A%22The%20generation%20of%20ultrashort%20visible%20energetic%20pulses%20is%20investigated%20numerically%20by%20the%20nonlinear%20propagation%20of%20infrared%20necklace%20beams%20in%20capillaries.%20We%20have%20developed%20a%20%283%2B1%29D%20model%20that%20solves%20the%20nonlinear%20propagation%20equation%2C%20including%20the%20complete%20spatio-temporal%20dynamics%20and%20the%20azimuthal%20dependence%20of%20these%20structured%20beams.%20Due%20to%20their%20singular%20nonlinear%20propagation%2C%20the%20spectrum%20broadening%20inside%20the%20capillary%20extends%20to%20the%20visible%20region%20in%20a%20controlled%20way%2C%20despite%20the%20high%20nonlinearity%2C%20avoiding%20self-focusing.%20The%20results%20indicate%20that%20the%20features%20of%20these%20necklace%20beams%20enable%20the%20formation%20of%20visible%20pulses%20with%20pulse%20duration%20below%2010%20fs%20and%20energies%20of%2050%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03bc%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20J%20by%20soliton%20self-compression%20dynamics%20for%20different%20gas%20pressures%20inside%20the%20capillary.%22%2C%22date%22%3A%222021-01-18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.411338%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-29-2-929%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A04Z%22%7D%7D%2C%7B%22key%22%3A%22G5RGVE2B%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dorney%20et%20al.%22%2C%22parsedDate%22%3A%222021-11-08%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BDorney%2C%20K.%20M.%2C%20Fan%2C%20T.%2C%20Nguyen%2C%20Q.%20L.%20D.%2C%20Ellis%2C%20J.%20L.%2C%20Hickstein%2C%20D.%20D.%2C%20Brooks%2C%20N.%2C%20Zusin%2C%20D.%2C%20Gentry%2C%20C.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20Kapteyn%2C%20H.%20C.%2C%20%26amp%3B%20Murnane%2C%20M.%20M.%20%282021%29.%20Bright%2C%20single%20helicity%2C%20high%20harmonics%20driven%20by%20mid-infrared%20bicircular%20laser%20fields.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B29%26lt%3B%5C%2Fi%26gt%3B%2823%29%2C%2038119.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.440813%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.440813%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Bright%2C%20single%20helicity%2C%20high%20harmonics%20driven%20by%20mid-infrared%20bicircular%20laser%20fields%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kevin%20M.%22%2C%22lastName%22%3A%22Dorney%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tingting%22%2C%22lastName%22%3A%22Fan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Quynh%20L.%20D.%22%2C%22lastName%22%3A%22Nguyen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennifer%20L.%22%2C%22lastName%22%3A%22Ellis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20D.%22%2C%22lastName%22%3A%22Hickstein%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nathan%22%2C%22lastName%22%3A%22Brooks%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dmitriy%22%2C%22lastName%22%3A%22Zusin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Gentry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henry%20C.%22%2C%22lastName%22%3A%22Kapteyn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20M.%22%2C%22lastName%22%3A%22Murnane%22%7D%5D%2C%22abstractNote%22%3A%22High-harmonic%20generation%20%28HHG%29%20is%20a%20unique%20tabletop%20light%20source%20with%20femtosecond-to-attosecond%20pulse%20duration%20and%20tailorable%20polarization%20and%20beam%20shape.%20Here%2C%20we%20use%20counter-rotating%20femtosecond%20laser%20pulses%20of%200.8%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00b5%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%20and%202.0%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03bc%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%20to%20extend%20the%20photon%20energy%20range%20of%20circularly%20polarized%20high-harmonics%20and%20also%20generate%20single-helicity%20HHG%20spectra.%20By%20driving%20HHG%20in%20helium%2C%20we%20produce%20circularly%20polarized%20soft%20x-ray%20harmonics%20beyond%20170%20eV%5Cu2014the%20highest%20photon%20energy%20of%20circularly%20polarized%20HHG%20achieved%20to%20date.%20In%20an%20Ar%20medium%2C%20dense%20spectra%20at%20photon%20energies%20well%20beyond%20the%20Cooper%20minimum%20are%20generated%2C%20with%20regions%20composed%20of%20a%20single%20helicity%5Cu2014consistent%20with%20the%20generation%20of%20a%20train%20of%20circularly%20polarized%20attosecond%20pulses.%20Finally%2C%20we%20show%20theoretically%20that%20circularly%20polarized%20HHG%20photon%20energies%20can%20extend%20beyond%20the%20carbon%20K%20edge%2C%20extending%20the%20range%20of%20molecular%20and%20materials%20systems%20that%20can%20be%20accessed%20using%20dynamic%20HHG%20chiral%20spectro-microscopies.%22%2C%22date%22%3A%222021-11-08%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.440813%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-29-23-38119%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A45Z%22%7D%7D%2C%7B%22key%22%3A%22E7T5II6K%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Fattouhi%20et%20al.%22%2C%22parsedDate%22%3A%222021-10-20%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BFattouhi%2C%20M.%2C%20Garc%26%23xED%3Ba-S%26%23xE1%3Bnchez%2C%20F.%2C%20Yanes%2C%20R.%2C%20Raposo%2C%20V.%2C%20Mart%26%23xED%3Bnez%2C%20E.%2C%20%26amp%3B%20Lopez-Diaz%2C%20L.%20%282021%29.%20Electric%20Field%20Control%20of%20the%20Skyrmion%20Hall%20Effect%20in%20Piezoelectric-Magnetic%20Devices.%20%26lt%3Bi%26gt%3BPhysical%20Review%20Applied%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B16%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20044035.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.16.044035%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.16.044035%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Electric%20Field%20Control%20of%20the%20Skyrmion%20Hall%20Effect%20in%20Piezoelectric-Magnetic%20Devices%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mouad%22%2C%22lastName%22%3A%22Fattouhi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Garc%5Cu00eda-S%5Cu00e1nchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roc%5Cu00edo%22%2C%22lastName%22%3A%22Yanes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V%5Cu00edctor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Mart%5Cu00ednez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Lopez-Diaz%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222021-10-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.16.044035%22%2C%22ISSN%22%3A%222331-7019%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevApplied.16.044035%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22DKHNJNID%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Fischer%20et%20al.%22%2C%22parsedDate%22%3A%222021-02-19%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BFischer%2C%20M.%2C%20Caridad%2C%20J.%20M.%2C%20Sajid%2C%20A.%2C%20Ghaderzadeh%2C%20S.%2C%20Ghorbani-Asl%2C%20M.%2C%20Gammelgaard%2C%20L.%2C%20B%26%23xF8%3Bggild%2C%20P.%2C%20Thygesen%2C%20K.%20S.%2C%20Krasheninnikov%2C%20A.%20V.%2C%20Xiao%2C%20S.%2C%20Wubs%2C%20M.%2C%20%26amp%3B%20Stenger%2C%20N.%20%282021%29.%20Controlled%20generation%20of%20luminescent%20centers%20in%20hexagonal%20boron%20nitride%20by%20irradiation%20engineering.%20%26lt%3Bi%26gt%3BScience%20Advances%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B7%26lt%3B%5C%2Fi%26gt%3B%288%29%2C%20eabe7138.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.abe7138%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.abe7138%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Controlled%20generation%20of%20luminescent%20centers%20in%20hexagonal%20boron%20nitride%20by%20irradiation%20engineering%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Fischer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Sajid%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Ghaderzadeh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Ghorbani-Asl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Gammelgaard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22B%5Cu00f8ggild%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%20S.%22%2C%22lastName%22%3A%22Thygesen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20V.%22%2C%22lastName%22%3A%22Krasheninnikov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Xiao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Wubs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Stenger%22%7D%5D%2C%22abstractNote%22%3A%22Irradiation%20engineering%20on%20hexagonal%20boron%20nitride%20reveals%20insights%20into%20the%20microscopic%20nature%20of%20quantum%20emitters.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Luminescent%20centers%20in%20the%20two-dimensional%20material%20hexagonal%20boron%20nitride%20have%20the%20potential%20to%20enable%20quantum%20applications%20at%20room%20temperature.%20To%20be%20used%20for%20applications%2C%20it%20is%20crucial%20to%20generate%20these%20centers%20in%20a%20controlled%20manner%20and%20to%20identify%20their%20microscopic%20nature.%20Here%2C%20we%20present%20a%20method%20inspired%20by%20irradiation%20engineering%20with%20oxygen%20atoms.%20We%20systematically%20explore%20the%20influence%20of%20the%20kinetic%20energy%20and%20the%20irradiation%20fluence%20on%20the%20generation%20of%20luminescent%20centers.%20We%20find%20modifications%20of%20their%20density%20for%20both%20parameters%2C%20while%20a%20fivefold%20enhancement%20is%20observed%20with%20increasing%20fluence.%20Molecular%20dynamics%20simulations%20clarify%20the%20generation%20mechanism%20of%20these%20centers%20and%20their%20microscopic%20nature.%20We%20infer%20that%20V%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20V%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2212%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20are%20the%20most%20likely%20centers%20formed.%20Ab%20initio%20calculations%20of%20their%20optical%20properties%20show%20excellent%20agreement%20with%20our%20experiments.%20Our%20methodology%20generates%20quantum%20emitters%20in%20a%20controlled%20manner%20and%20provides%20insights%20into%20their%20microscopic%20nature.%22%2C%22date%22%3A%222021-02-19%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1126%5C%2Fsciadv.abe7138%22%2C%22ISSN%22%3A%222375-2548%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.science.org%5C%2Fdoi%5C%2F10.1126%5C%2Fsciadv.abe7138%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A24%3A46Z%22%7D%7D%2C%7B%22key%22%3A%223YLZKUUG%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Garc%5Cu00eda-Cabrera%20et%20al.%22%2C%22parsedDate%22%3A%222021-09-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BGarc%26%23xED%3Ba-Cabrera%2C%20A.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20%26amp%3B%20Plaja%2C%20L.%20%282021%29.%20Ultrafast%20sub-nanometer%20matter-wave%20temporal%20Talbot%20effect.%20%26lt%3Bi%26gt%3BNew%20Journal%20of%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B23%26lt%3B%5C%2Fi%26gt%3B%289%29%2C%20093011.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1367-2630%5C%2Fac1fcc%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1367-2630%5C%2Fac1fcc%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ultrafast%20sub-nanometer%20matter-wave%20temporal%20Talbot%20effect%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ana%22%2C%22lastName%22%3A%22Garc%5Cu00eda-Cabrera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20coherent%20manipulation%20of%20the%20electron%20wavefunction%20at%20the%20atomic%20spatial%20and%20temporal%20scales%20is%20the%20fundamental%20breakthrough%20underlying%20far-reaching%20ultrafast%20phenomena%20as%20high-order%20harmonic%20radiation%20and%20attosecond%20pulse%20generation.%20In%20this%20work%2C%20we%20present%20a%20next%20step%20in%20the%20coherent%20control%20of%20matter%20waves%20by%20translating%20the%20concept%20of%20Talbot%20interferometry%20to%20the%20subnanomenter%5Cu2013femtosecond%20realm.%20We%20study%20the%20high-harmonic%20emission%20from%20a%20periodic%20system%20irradiated%20by%20an%20intense%20mid-infrared%20laser%20beam%20at%20grazing%20incidence.%20Our%20calculations%20show%20that%20Bloch%20electrons%2C%20once%20ionized%2C%20follow%20a%20sequence%20of%20ultrafast%20%28femtosecond%29%20revivals%20associated%20with%20the%20temporal%20Talbot%20effect.%20We%20demonstrate%20that%20these%20revivals%20leave%20a%20distinct%20signature%20in%20the%20high-frequency%20harmonic%20spectrum%2C%20in%20the%20form%20of%20structures%20extending%20beyond%20the%20main%20spectral%20cutoff%2C%20toward%20the%20x-rays.%20The%20reinterpretation%20of%20the%20process%20of%20high-order%20harmonic%20generation%20as%20the%20temporal%20realization%20of%20a%20Talbot%5Cu2013Lau%20interferometer%20suggests%20high-harmonic%20spectroscopy%20as%20an%20appropriate%20scheme%20to%20develop%20subnanometer%20ultrafast%20Talbot%20interferometry.%22%2C%22date%22%3A%222021-09-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1367-2630%5C%2Fac1fcc%22%2C%22ISSN%22%3A%221367-2630%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1367-2630%5C%2Fac1fcc%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A11Z%22%7D%7D%2C%7B%22key%22%3A%22TWZXNCG5%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Guedas%20et%20al.%22%2C%22parsedDate%22%3A%222021-11-21%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BGuedas%2C%20R.%2C%20Raposo%2C%20V.%2C%20%26amp%3B%20Prieto%2C%20J.%20L.%20%282021%29.%20Micro%20and%20nanostrips%20in%20spintronics%3A%20How%20to%20keep%20them%20cool.%20%26lt%3Bi%26gt%3BJournal%20of%20Applied%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B130%26lt%3B%5C%2Fi%26gt%3B%2819%29%2C%20191101.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0071900%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0071900%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Micro%20and%20nanostrips%20in%20spintronics%3A%20How%20to%20keep%20them%20cool%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rodrigo%22%2C%22lastName%22%3A%22Guedas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V%5Cu00edctor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20L.%22%2C%22lastName%22%3A%22Prieto%22%7D%5D%2C%22abstractNote%22%3A%22This%20Tutorial%20explores%20the%20problem%20of%20Joule%20heating%20on%20metallic%20micro%20or%20nanostrips%2C%20still%20one%20of%20the%20most%20popular%20geometries%20in%20modern%20spintronics.%20Many%20of%20the%20effects%20that%20result%20from%20the%20interaction%20of%20a%20spin%20polarized%20current%20and%20the%20local%20magnetization%20require%20a%20sizeable%20current%20density.%20This%20implies%2C%20quite%20often%2C%20an%20unignorable%20Joule%20heating.%20Despite%20the%20few%20articles%20devoted%20to%20some%20aspects%20of%20Joule%20heating%2C%20there%20is%20still%20disinformation%20and%20many%20misconceptions%20on%20this%20topic%2C%20which%20is%20key%20for%20the%20correct%20interpretation%20of%20the%20scientific%20results.%20In%20this%20Tutorial%2C%20we%20highlight%20the%20material%20parameters%20that%20are%20important%20to%20keep%20the%20temperature%20of%20the%20strip%20under%20control%20and%20those%20that%20give%20only%20a%20marginal%20advantage.%20In%20the%20vast%20majority%20of%20papers%2C%20at%20least%20one%20of%20these%20parameters%20is%20missing.%20We%20also%20focus%20on%20some%20misconceptions%2C%20such%20as%20the%20belief%20that%20performing%20the%20measurement%20on%20a%20cryostat%20rules%20Joule%20heating%20out.%20In%20fact%2C%20for%20a%20fixed%20current%20density%2C%20measuring%20in%20a%20cryostat%20decreases%20the%20temperature%20but%20not%20enough%20to%20justify%20the%20use%20of%20such%20a%20costly%20measuring%20setup.%20At%20the%20practical%20level%2C%20we%20put%20forward%20a%201D%20model%20to%20calculate%2C%20in%20few%20seconds%2C%20if%20Joule%20heating%20is%20present%20and%20if%20it%20should%20be%20taken%20into%20account%20when%20interpreting%20the%20results.%20Finally%2C%20and%20importantly%2C%20we%20describe%20a%20simple%20fabrication%20route%20to%20enhance%20the%20dissipation%20of%20heat%20in%20the%20strip%20considerably.%20This%20fabrication%20strategy%20is%20more%20effective%20at%20keeping%20the%20temperature%20under%20control%20than%20performing%20the%20experiment%20at%20cryogenic%20temperatures.%22%2C%22date%22%3A%222021-11-21%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0071900%22%2C%22ISSN%22%3A%220021-8979%2C%201089-7550%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fjap%5C%2Farticle%5C%2F130%5C%2F19%5C%2F191101%5C%2F992640%5C%2FMicro-and-nanostrips-in-spintronics-How-to-keep%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A10Z%22%7D%7D%2C%7B%22key%22%3A%22JJQZGIAR%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Guralnik%20et%20al.%22%2C%22parsedDate%22%3A%222021-04-30%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BGuralnik%2C%20B.%2C%20Hansen%2C%20O.%2C%20Henrichsen%2C%20H.%20H.%2C%20Caridad%2C%20J.%20M.%2C%20Wei%2C%20W.%2C%20Hansen%2C%20M.%20F.%2C%20Nielsen%2C%20P.%20F.%2C%20%26amp%3B%20Petersen%2C%20D.%20H.%20%282021%29.%20Effective%20electrical%20resistivity%20in%20a%20square%20array%20of%20oriented%20square%20inclusions.%20%26lt%3Bi%26gt%3BNanotechnology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B32%26lt%3B%5C%2Fi%26gt%3B%2818%29%2C%20185706.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6528%5C%2Fabdbec%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6528%5C%2Fabdbec%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Effective%20electrical%20resistivity%20in%20a%20square%20array%20of%20oriented%20square%20inclusions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benny%22%2C%22lastName%22%3A%22Guralnik%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ole%22%2C%22lastName%22%3A%22Hansen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henrik%20H%22%2C%22lastName%22%3A%22Henrichsen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wilson%22%2C%22lastName%22%3A%22Wei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mikkel%20F%22%2C%22lastName%22%3A%22Hansen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20F%22%2C%22lastName%22%3A%22Nielsen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dirch%20H%22%2C%22lastName%22%3A%22Petersen%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20continuing%20miniaturization%20of%20optoelectronic%20devices%2C%20alongside%20the%20rise%20of%20electromagnetic%20metamaterials%2C%20poses%20an%20ongoing%20challenge%20to%20nanofabrication.%20With%20the%20increasing%20impracticality%20of%20quality%20control%20at%20a%20single-feature%20%28-device%29%20resolution%2C%20there%20is%20an%20increasing%20demand%20for%20array-based%20metrologies%2C%20where%20compliance%20to%20specifications%20can%20be%20monitored%20via%20signals%20arising%20from%20a%20multitude%20of%20features%20%28devices%29.%20To%20this%20end%2C%20a%20square%20grid%20with%20quadratic%20sub-features%20is%20amongst%20the%20more%20common%20designs%20in%20nanotechnology%20%28e.g.%20nanofishnets%2C%20nanoholes%2C%20nanopyramids%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03bc%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20LED%20arrays%20etc%29.%20The%20electrical%20resistivity%20of%20such%20a%20quadratic%20grid%20may%20be%20essential%20to%20its%20functionality%3B%20it%20can%20also%20be%20used%20to%20characterize%20the%20critical%20dimensions%20of%20the%20periodic%20features.%20While%20the%20problem%20of%20the%20effective%20electrical%20resistivity%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20eff%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20of%20a%20thin%20sheet%20with%20resistivity%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20hosting%20a%20doubly-periodic%20array%20of%20oriented%20square%20inclusions%20with%20resistivity%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20has%20been%20treated%20before%20%28Obnosov%201999%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20SIAM%20J.%20Appl.%20Math.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2059%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201267%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2013%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2087%29%2C%20a%20closed-form%20solution%20has%20been%20found%20for%20only%20one%20case%2C%20where%20the%20inclusion%20occupies%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0%3D%5Cu00a01%5C%2F4%20of%20the%20unit%20cell.%20Here%20we%20combine%20first-principle%20approximations%2C%20numerical%20modeling%2C%20and%20mathematical%20analysis%20to%20generalize%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20eff%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20for%20an%20arbitrary%20inclusion%20size%20%280%5Cu00a0%26lt%3B%5Cu00a0%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0%26lt%3B%5Cu00a01%29.%20We%20find%20that%20in%20the%20range%200.01%5Cu00a0%5Cu2264%5Cu00a0%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0%5Cu2264%5Cu00a00.99%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20eff%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20may%20be%20approximated%20%28to%20within%5Cu00a0%26lt%3B0.3%25%20error%20with%20respect%20to%20finite%20element%20simulations%29%20by%3A%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20e%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03b1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2212%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2212%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03b1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2212%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03c1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00b7%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03b1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03b1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200.9707%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200.9193%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2212%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202.1261%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200.4671%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20whereby%20at%20the%20limiting%20cases%20of%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0%5Cu2192%5Cu00a00%20and%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0%5Cu2192%5Cu00a01%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03b1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20approaches%20asymptotic%20values%20of%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03b1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0%3D%5Cu00a02.039%20and%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03b1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0%3D%5Cu00a01%5C%2F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2212%201%2C%20respectively.%20The%20applicability%20of%20the%20approximation%20to%20considerably%20more%20complex%20structures%2C%20such%20as%20recursively-nested%20inclusions%20and%5C%2For%20nonplanar%20topologies%2C%20is%20demonstrated%20and%20discussed.%20While%20certainly%20not%20limited%20to%2C%20the%20theory%20is%20examined%20from%20within%20the%20scope%20of%20micro%20four-point%20probe%20%28M4PP%29%20metrology%2C%20which%20currently%20lacks%20data%20reduction%20schemes%20for%20periodic%20materials%20whose%20cell%20is%20smaller%20than%20the%20typical%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03bc%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20m-scale%20M4PP%20footprint.%22%2C%22date%22%3A%222021-04-30%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6528%5C%2Fabdbec%22%2C%22ISSN%22%3A%220957-4484%2C%201361-6528%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6528%5C%2Fabdbec%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A20Z%22%7D%7D%2C%7B%22key%22%3A%223WUXQMTJ%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hassan%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BHassan%2C%20N.%2C%20Saha%2C%20D.%2C%20Linseisen%2C%20C.%20M.%2C%20Vyas%2C%20V.%2C%20Joslin%2C%20M.%2C%20Pai%2C%20A.%20G.%2C%20Garcia-Sanchez%2C%20F.%2C%20%26amp%3B%20Friedman%2C%20J.%20S.%20%282021%29.%20Energy%20efficiency%20challenges%20for%20all-spin%20logic.%20%26lt%3Bi%26gt%3BMicroelectronics%20Journal%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B110%26lt%3B%5C%2Fi%26gt%3B%2C%20105008.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.mejo.2021.105008%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.mejo.2021.105008%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Energy%20efficiency%20challenges%20for%20all-spin%20logic%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Naimul%22%2C%22lastName%22%3A%22Hassan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Diptish%22%2C%22lastName%22%3A%22Saha%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chandler%20M.%22%2C%22lastName%22%3A%22Linseisen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vaibhav%22%2C%22lastName%22%3A%22Vyas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Joslin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ashish%20G.%22%2C%22lastName%22%3A%22Pai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Garcia-Sanchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joseph%20S.%22%2C%22lastName%22%3A%22Friedman%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2204%5C%2F2021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.mejo.2021.105008%22%2C%22ISSN%22%3A%2200262692%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0026269221000197%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A26Z%22%7D%7D%2C%7B%22key%22%3A%22V4BACL9K%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kaiser%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BKaiser%2C%20A.%20L.%2C%20Lidston%2C%20D.%20L.%2C%20Peterson%2C%20S.%20C.%2C%20Acauan%2C%20L.%20H.%2C%20Steiner%2C%20S.%20A.%2C%20Guzman%20De%20Villoria%2C%20R.%2C%20Vanderhout%2C%20A.%20R.%2C%20Stein%2C%20I.%20Y.%2C%20%26amp%3B%20Wardle%2C%20B.%20L.%20%282021%29.%20Substrate%20adhesion%20evolves%20non-monotonically%20with%20processing%20time%20in%20millimeter-scale%20aligned%20carbon%20nanotube%20arrays.%20%26lt%3Bi%26gt%3BNanoscale%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B13%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%20261%26%23×2013%3B271.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD0NR05469K%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD0NR05469K%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Substrate%20adhesion%20evolves%20non-monotonically%20with%20processing%20time%20in%20millimeter-scale%20aligned%20carbon%20nanotube%20arrays%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ashley%20L.%22%2C%22lastName%22%3A%22Kaiser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dale%20L.%22%2C%22lastName%22%3A%22Lidston%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophie%20C.%22%2C%22lastName%22%3A%22Peterson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luiz%20H.%22%2C%22lastName%22%3A%22Acauan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephen%20A.%22%2C%22lastName%22%3A%22Steiner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberto%22%2C%22lastName%22%3A%22Guzman%20De%20Villoria%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amy%20R.%22%2C%22lastName%22%3A%22Vanderhout%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Itai%20Y.%22%2C%22lastName%22%3A%22Stein%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brian%20L.%22%2C%22lastName%22%3A%22Wardle%22%7D%5D%2C%22abstractNote%22%3A%22Aligned%20carbon%20nanotube%20%28CNT%29%20array%20adhesion%20strength%20evolves%20with%20CNT%20process%20time%2C%20decreasing%20and%20then%20increasing%20during%20growth%20and%20annealing%2C%20as%20captured%20by%20models%20relating%20CNT%20diameter%2C%20array%20effective%20modulus%2C%20and%20CNT%5Cu2013substrate%20work%20of%20adhesion.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20advantageous%20intrinsic%20and%20scale-dependent%20properties%20of%20aligned%20nanofibers%20%28NFs%29%20and%20their%20assembly%20into%203D%20architectures%20motivate%20their%20use%20as%20dry%20adhesives%20and%20shape-engineerable%20materials.%20While%20controlling%20NF%5Cu2013substrate%20adhesion%20is%20critical%20for%20scaled%20manufacturing%20and%20application-specific%20performance%2C%20current%20understanding%20of%20how%20this%20property%20evolves%20with%20processing%20conditions%20is%20limited.%20In%20this%20report%2C%20we%20introduce%20substrate%20adhesion%20predictive%20capabilities%20by%20using%20an%20exemplary%20array%20of%20NFs%2C%20aligned%20carbon%20nanotubes%20%28CNTs%29%2C%20studied%20as%20a%20function%20of%20their%20processing.%20Substrate%20adhesion%20is%20found%20to%20scale%20non-monotonically%20with%20process%20time%20in%20a%20hydrocarbon%20environment%20and%20is%20investigated%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20via%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20the%20tensile%20pull-off%20of%20mm-scale%20CNT%20arrays%20from%20their%20growth%20substrate.%20CNT%20synthesis%20follows%20two%20regimes%3A%20Mode%20I%20%28%5Cu2018Growth%5Cu2019%29%20and%20Mode%20II%20%28%5Cu2018Post-Growth%5Cu2019%29%2C%20separated%20by%20growth%20termination.%20Within%2010%20minutes%20of%20post-growth%2C%20experiments%20and%20modeling%20indicate%20an%20order-of-magnitude%20increase%20in%20CNT%20array%5Cu2013substrate%20adhesion%20strength%20%28%5Cu223c40%20to%20285%20kPa%29%20and%20effective%20elastic%20array%20modulus%20%28%5Cu223c6%20to%2047%20MPa%29%2C%20and%20a%20two-orders-of-magnitude%20increase%20in%20the%20single%20CNT%5Cu2013substrate%20adhesion%20force%20%28%5Cu223c0.190%20to%2012.3%20nN%29%20and%20work%20of%20adhesion%20%28%5Cu223c0.07%20to%201.5%20J%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%2C%20where%20the%20iron%20catalyst%20is%20found%20to%20remain%20on%20the%20substrate.%20Growth%20number%20decay%20in%20Mode%20I%20and%20carbon%20accumulation%20in%20Mode%20II%20contribute%20to%20the%20mechanical%20response%2C%20which%20may%20imply%20a%20change%20in%20the%20deformation%20mechanism.%20Predictive%20capabilities%20of%20the%20model%20are%20assessed%20for%20previously%20studied%20NF%20arrays%2C%20suggesting%20that%20the%20current%20framework%20can%20enable%20the%20future%20design%20and%20manufacture%20of%20high-value%20NF%20array%20applications.%22%2C%22date%22%3A%222021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD0NR05469K%22%2C%22ISSN%22%3A%222040-3364%2C%202040-3372%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DD0NR05469K%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A13Z%22%7D%7D%2C%7B%22key%22%3A%22DDT7DXGB%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kifle%20et%20al.%22%2C%22parsedDate%22%3A%222021-01-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BKifle%2C%20E.%2C%20Loiko%2C%20P.%2C%20Romero%2C%20C.%2C%20De%20Aldana%2C%20J.%20R.%20V.%2C%20Zakharov%2C%20V.%2C%20Gurova%2C%20Y.%2C%20Veniaminov%2C%20A.%2C%20Petrov%2C%20V.%2C%20Griebner%2C%20U.%2C%20Thouroude%2C%20R.%2C%20Laroche%2C%20M.%2C%20Camy%2C%20P.%2C%20Aguil%26%23xF3%3B%2C%20M.%2C%20D%26%23xED%3Baz%2C%20F.%2C%20%26amp%3B%20Mateos%2C%20X.%20%282021%29.%20Tm%20%26lt%3Bsup%26gt%3B3%2B%26lt%3B%5C%2Fsup%26gt%3B%20and%20Ho%20%26lt%3Bsup%26gt%3B3%2B%26lt%3B%5C%2Fsup%26gt%3B%20colasing%20in%20in-band%20pumped%20waveguides%20fabricated%20by%20femtosecond%20laser%20writing.%20%26lt%3Bi%26gt%3BOptics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B46%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%20122.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.399546%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.399546%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tm%20%3Csup%3E3%2B%3C%5C%2Fsup%3E%20and%20Ho%20%3Csup%3E3%2B%3C%5C%2Fsup%3E%20colasing%20in%20in-band%20pumped%20waveguides%20fabricated%20by%20femtosecond%20laser%20writing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esrom%22%2C%22lastName%22%3A%22Kifle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pavel%22%2C%22lastName%22%3A%22Loiko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20Rodr%5Cu00edguez%20V%5Cu00e1zquez%22%2C%22lastName%22%3A%22De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Viktor%22%2C%22lastName%22%3A%22Zakharov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yulia%22%2C%22lastName%22%3A%22Gurova%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrey%22%2C%22lastName%22%3A%22Veniaminov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valentin%22%2C%22lastName%22%3A%22Petrov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Uwe%22%2C%22lastName%22%3A%22Griebner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Romain%22%2C%22lastName%22%3A%22Thouroude%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathieu%22%2C%22lastName%22%3A%22Laroche%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrice%22%2C%22lastName%22%3A%22Camy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Magdalena%22%2C%22lastName%22%3A%22Aguil%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesc%22%2C%22lastName%22%3A%22D%5Cu00edaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Mateos%22%7D%5D%2C%22abstractNote%22%3A%22We%20report%20on%20the%20first%2C%20to%20the%20best%20of%20our%20knowledge%2C%20in-band%20pumped%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20T%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20o%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20codoped%20waveguide%20%28WG%29%20laser.%20A%20depressed-index%20surface%20channel%20WG%20%28type%20III%29%20with%20a%2050%5Cu00a0%5Cu00b5m%20half-ring%20cladding%20is%20fabricated%20in%20a%205%5Cu00a0at.%20%25%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20T%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%200.5%5Cu00a0at.%20%25%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20o%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3A%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20K%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20L%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20u%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20W%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%204%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20crystal%20by%20femtosecond%20pulse%20direct%20laser%20writing.%20Under%20in-band%20pumping%20by%20a%201679%5Cu00a0nm%20Er%20Raman%20fiber%20laser%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20T%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20o%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20colasing%20is%20observed%20in%20the%20WG%20and%20explained%20by%20bidirectional%20energy%20transfer.%20The%20maximum%20total%20output%20power%20at%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu223c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201942%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20n%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20T%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%202059%5Cu00a0nm%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20o%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20is%20448%5Cu00a0mW%20with%20a%20slope%20efficiencyM%20of%2040.6%25%2C%20which%20is%20a%20record%20high%20for%20this%20type%20of%20WG%20lasers.%20The%20maximum%20output%20power%20of%20the%20Ho%20laser%20reaches%20144%5Cu00a0mW.%22%2C%22date%22%3A%222021-01-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOL.399546%22%2C%22ISSN%22%3A%220146-9592%2C%201539-4794%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dol-46-1-122%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22TGKREPT3%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22L%5Cu00f3pez-Ripa%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BL%26%23xF3%3Bpez-Ripa%2C%20M.%2C%20Alonso%2C%20B.%2C%20Jarabo%2C%20S.%2C%20Salgado-Remacha%2C%20F.%20J.%2C%20Aguado%2C%20J.%20C.%2C%20%26amp%3B%20Sola%2C%20%26%23xCD%3B.%20J.%20%282021%29.%20Coherent%20artifact%20and%20time-dependent%20polarization%20in%20amplified%20ultrafast%20erbium-doped%20fibre%20lasers.%20%26lt%3Bi%26gt%3BOptics%20%26amp%3B%20Laser%20Technology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B140%26lt%3B%5C%2Fi%26gt%3B%2C%20107018.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.optlastec.2021.107018%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.optlastec.2021.107018%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Coherent%20artifact%20and%20time-dependent%20polarization%20in%20amplified%20ultrafast%20erbium-doped%20fibre%20lasers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Miguel%22%2C%22lastName%22%3A%22L%5Cu00f3pez-Ripa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjam%5Cu00edn%22%2C%22lastName%22%3A%22Alonso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebasti%5Cu00e1n%22%2C%22lastName%22%3A%22Jarabo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francisco%20J.%22%2C%22lastName%22%3A%22Salgado-Remacha%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juan%20Carlos%22%2C%22lastName%22%3A%22Aguado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2208%5C%2F2021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.optlastec.2021.107018%22%2C%22ISSN%22%3A%2200303992%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0030399221001067%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A49Z%22%7D%7D%2C%7B%22key%22%3A%22NA57NM9B%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mackenzie%20et%20al.%22%2C%22parsedDate%22%3A%222021-10-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BMackenzie%2C%20D.%20M.%20A.%2C%20Galbiati%2C%20M.%2C%20De%20Cerio%2C%20X.%20D.%2C%20Sahalianov%2C%20I.%20Y.%2C%20Radchenko%2C%20T.%20M.%2C%20Sun%2C%20J.%2C%20Pe%26%23xF1%3Ba%2C%20D.%2C%20Gammelgaard%2C%20L.%2C%20Jessen%2C%20B.%20S.%2C%20Thomsen%2C%20J.%20D.%2C%20B%26%23xF8%3Bggild%2C%20P.%2C%20Garcia-Lekue%2C%20A.%2C%20Camilli%2C%20L.%2C%20%26amp%3B%20Caridad%2C%20J.%20M.%20%282021%29.%20Unraveling%20the%20electronic%20properties%20of%20graphene%20with%20substitutional%20oxygen.%20%26lt%3Bi%26gt%3B2D%20Materials%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B8%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20045035.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2053-1583%5C%2Fac28ab%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2053-1583%5C%2Fac28ab%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Unraveling%20the%20electronic%20properties%20of%20graphene%20with%20substitutional%20oxygen%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20M%20A%22%2C%22lastName%22%3A%22Mackenzie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Miriam%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xabier%20D%22%2C%22lastName%22%3A%22De%20Cerio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I%20Y%22%2C%22lastName%22%3A%22Sahalianov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Taras%20M%22%2C%22lastName%22%3A%22Radchenko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jianbo%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Diego%22%2C%22lastName%22%3A%22Pe%5Cu00f1a%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lene%22%2C%22lastName%22%3A%22Gammelgaard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bjarke%20S%22%2C%22lastName%22%3A%22Jessen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joachim%20D%22%2C%22lastName%22%3A%22Thomsen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22B%5Cu00f8ggild%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aran%22%2C%22lastName%22%3A%22Garcia-Lekue%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Camilli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M%22%2C%22lastName%22%3A%22Caridad%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222021-10-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F2053-1583%5C%2Fac28ab%22%2C%22ISSN%22%3A%222053-1583%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F2053-1583%5C%2Fac28ab%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A08Z%22%7D%7D%2C%7B%22key%22%3A%22KBW4HHLV%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mart%5Cu00ednez-Ojeda%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BMart%26%23xED%3Bnez-Ojeda%2C%20R.%20M.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20%26amp%3B%20Bueno%2C%20J.%20M.%20%282021%29.%20Enhancement%20of%20second%20harmonic%20microscopy%20images%20in%20collagen-based%20thick%20samples%20using%20radially%20polarized%20laser%20beams.%20%26lt%3Bi%26gt%3BOptics%20Communications%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B499%26lt%3B%5C%2Fi%26gt%3B%2C%20127273.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.optcom.2021.127273%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.optcom.2021.127273%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Enhancement%20of%20second%20harmonic%20microscopy%20images%20in%20collagen-based%20thick%20samples%20using%20radially%20polarized%20laser%20beams%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rosa%20M.%22%2C%22lastName%22%3A%22Mart%5Cu00ednez-Ojeda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juan%20M.%22%2C%22lastName%22%3A%22Bueno%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2211%5C%2F2021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.optcom.2021.127273%22%2C%22ISSN%22%3A%2200304018%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0030401821005228%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A51Z%22%7D%7D%2C%7B%22key%22%3A%22JG8SKECR%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Masciocchi%20et%20al.%22%2C%22parsedDate%22%3A%222021-11-14%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BMasciocchi%2C%20G.%2C%20Fattouhi%2C%20M.%2C%20Kehlberger%2C%20A.%2C%20Lopez-Diaz%2C%20L.%2C%20Syskaki%2C%20M.-A.%2C%20%26amp%3B%20Kl%26%23xE4%3Bui%2C%20M.%20%282021%29.%20Strain-controlled%20domain%20wall%20injection%20into%20nanowires%20for%20sensor%20applications.%20%26lt%3Bi%26gt%3BJournal%20of%20Applied%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B130%26lt%3B%5C%2Fi%26gt%3B%2818%29%2C%20183903.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0069661%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0069661%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Strain-controlled%20domain%20wall%20injection%20into%20nanowires%20for%20sensor%20applications%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giovanni%22%2C%22lastName%22%3A%22Masciocchi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mouad%22%2C%22lastName%22%3A%22Fattouhi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Kehlberger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Lopez-Diaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maria-Andromachi%22%2C%22lastName%22%3A%22Syskaki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathias%22%2C%22lastName%22%3A%22Kl%5Cu00e4ui%22%7D%5D%2C%22abstractNote%22%3A%22We%20investigate%20experimentally%20the%20effects%20of%20strain%20on%20the%20injection%20of%20180%5Cu00b0%20domain%20walls%20%28DWs%29%20from%20a%20nucleation%20pad%20into%20magnetic%20nanowires%2C%20as%20typically%20used%20for%20DW-based%20sensors.%20In%20our%20study%2C%20the%20strain%2C%20generated%20by%20substrate%20bending%2C%20induces%20in%20the%20material%20a%20uniaxial%20anisotropy%20due%20to%20magnetoelastic%20coupling.%20To%20compare%20the%20strain%20effects%2C%20Co40Fe40B20%2C%20Ni%2C%20and%20Ni82Fe18%20samples%20with%20in-plane%20magnetization%20and%20different%20magnetoelastic%20coupling%20are%20deposited.%20In%20these%20samples%2C%20we%20measure%20the%20magnetic%20field%20required%20for%20the%20injection%20of%20a%20DW%2C%20by%20imaging%20using%20differential%20contrast%20in%20a%20magneto-optical%20Kerr%20microscope.%20We%20find%20that%20strain%20increases%20the%20DW%20injection%20field%20and%20that%20the%20switching%20mechanism%20depends%20strongly%20on%20the%20strain%20direction.%20We%20observe%20that%20low%20magnetic%20anisotropy%20facilitates%20the%20creation%20of%20a%20domain%20wall%20at%20the%20junction%20between%20the%20pad%20and%20the%20wire%2C%20whereas%20a%20strain-induced%20magnetic%20easy%20axis%20significantly%20increases%20the%20coercive%20field%20of%20the%20nucleation%20pad.%20Moreover%2C%20we%20find%20that%20these%20effects%20of%20strain-induced%20anisotropy%20can%20be%20counteracted%20by%20an%20additional%20magnetic%20uniaxial%20anisotropy%20perpendicular%20to%20the%20strain-induced%20easy%20axis.%20We%20perform%20micromagnetic%20simulations%20to%20support%20the%20interpretation%20of%20our%20experimental%20findings%20showing%20that%20the%20above%20described%20observations%20can%20be%20explained%20by%20the%20effective%20anisotropy%20in%20the%20device.%20The%20anisotropy%20influences%20the%20switching%20mechanism%20in%20the%20nucleation%20pad%20as%20well%20as%20the%20pinning%20of%20the%20DW%20at%20the%20wire%20entrance.%20As%20the%20DW%20injection%20is%20a%20key%20operation%20for%20sensor%20performances%2C%20the%20observations%20show%20that%20strain%20is%20imposing%20a%20lower%20limit%20for%20the%20sensor%20field%20operating%20window.%22%2C%22date%22%3A%222021-11-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0069661%22%2C%22ISSN%22%3A%220021-8979%2C%201089-7550%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fjap%5C%2Farticle%5C%2F130%5C%2F18%5C%2F183903%5C%2F158665%5C%2FStrain-controlled-domain-wall-injection-into%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A41Z%22%7D%7D%2C%7B%22key%22%3A%22HNA2YBM4%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mirani%20et%20al.%22%2C%22parsedDate%22%3A%222021-01-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BMirani%2C%20F.%2C%20Maffini%2C%20A.%2C%20Casamichiela%2C%20F.%2C%20Pazzaglia%2C%20A.%2C%20Formenti%2C%20A.%2C%20Dellasega%2C%20D.%2C%20Russo%2C%20V.%2C%20Vavassori%2C%20D.%2C%20Bortot%2C%20D.%2C%20Huault%2C%20M.%2C%20Zeraouli%2C%20G.%2C%20Ospina%2C%20V.%2C%20Malko%2C%20S.%2C%20Api%26%23xF1%3Baniz%2C%20J.%20I.%2C%20P%26%23xE9%3Brez-Hern%26%23xE1%3Bndez%2C%20J.%20A.%2C%20De%20Luis%2C%20D.%2C%20Gatti%2C%20G.%2C%20Volpe%2C%20L.%2C%20Pola%2C%20A.%2C%20%26amp%3B%20Passoni%2C%20M.%20%282021%29.%20Integrated%20quantitative%20PIXE%20analysis%20and%20EDX%20spectroscopy%20using%20a%20laser-driven%20particle%20source.%20%26lt%3Bi%26gt%3BScience%20Advances%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B7%26lt%3B%5C%2Fi%26gt%3B%283%29%2C%20eabc8660.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.abc8660%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.abc8660%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Integrated%20quantitative%20PIXE%20analysis%20and%20EDX%20spectroscopy%20using%20a%20laser-driven%20particle%20source%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Mirani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Maffini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Casamichiela%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Pazzaglia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Formenti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Dellasega%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Russo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Vavassori%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Bortot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Huault%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Zeraouli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Ospina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Malko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20I.%22%2C%22lastName%22%3A%22Api%5Cu00f1aniz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20A.%22%2C%22lastName%22%3A%22P%5Cu00e9rez-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22De%20Luis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Gatti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Volpe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Pola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Passoni%22%7D%5D%2C%22abstractNote%22%3A%22A%20laser-driven%20particle%20source%20is%20exploited%20for%20the%20elemental%20and%20stratigraphic%20characterization%20of%20a%20nonhomogeneous%20sample.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Among%20the%20existing%20elemental%20characterization%20techniques%2C%20particle-induced%20x-ray%20emission%20%28PIXE%29%20and%20energy-dispersive%20x-ray%20%28EDX%29%20spectroscopy%20are%20two%20of%20the%20most%20widely%20used%20in%20different%20scientific%20and%20technological%20fields.%20Here%2C%20we%20present%20the%20first%20quantitative%20laser-driven%20PIXE%20and%20laser-driven%20EDX%20experimental%20investigation%20performed%20at%20the%20Centro%20de%20L%5Cu00e1seres%20Pulsados%20in%20Salamanca.%20Thanks%20to%20their%20potential%20for%20compactness%20and%20portability%2C%20laser-driven%20particle%20sources%20are%20very%20appealing%20for%20materials%20science%20applications%2C%20especially%20for%20materials%20analysis%20techniques.%20We%20demonstrate%20the%20possibility%20to%20exploit%20the%20x-ray%20signal%20produced%20by%20the%20co-irradiation%20with%20both%20electrons%20and%20protons%20to%20identify%20the%20elements%20in%20the%20sample.%20We%20show%20that%2C%20using%20the%20proton%20beam%20only%2C%20we%20can%20successfully%20obtain%20quantitative%20information%20about%20the%20sample%20structure%20through%20laser-driven%20PIXE%20analysis.%20These%20results%20pave%20the%20way%20toward%20the%20development%20of%20a%20compact%20and%20multifunctional%20apparatus%20for%20the%20elemental%20analysis%20of%20materials%20based%20on%20a%20laser-driven%20particle%20source.%22%2C%22date%22%3A%222021-01-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1126%5C%2Fsciadv.abc8660%22%2C%22ISSN%22%3A%222375-2548%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.science.org%5C%2Fdoi%5C%2F10.1126%5C%2Fsciadv.abc8660%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A30Z%22%7D%7D%2C%7B%22key%22%3A%2242MX94C5%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Osuna%20Ruiz%20et%20al.%22%2C%22parsedDate%22%3A%222021-12-03%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BOsuna%20Ruiz%2C%20D.%2C%20Alejos%2C%20O.%2C%20Raposo%2C%20V.%2C%20%26amp%3B%20Mart%26%23xED%3Bnez%2C%20E.%20%282021%29.%20Current-Driven%20Domain%20Wall%20Motion%20in%20Curved%20Ferrimagnetic%20Strips%20Above%20and%20Below%20the%20Angular%20Momentum%20Compensation.%20%26lt%3Bi%26gt%3BFrontiers%20in%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B9%26lt%3B%5C%2Fi%26gt%3B%2C%20772264.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffphy.2021.772264%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffphy.2021.772264%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Current-Driven%20Domain%20Wall%20Motion%20in%20Curved%20Ferrimagnetic%20Strips%20Above%20and%20Below%20the%20Angular%20Momentum%20Compensation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Osuna%20Ruiz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Alejos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Mart%5Cu00ednez%22%7D%5D%2C%22abstractNote%22%3A%22Current%20driven%20domain%20wall%20motion%20in%20curved%20Heavy%20Metal%5C%2FFerrimagnetic%5C%2FOxide%20multilayer%20strips%20is%20investigated%20using%20systematic%20micromagnetic%20simulations%20which%20account%20for%20spin-orbit%20coupling%20phenomena.%20Domain%20wall%20velocity%20and%20characteristic%20relaxation%20times%20are%20studied%20as%20functions%20of%20the%20geometry%2C%20curvature%20and%20width%20of%20the%20strip%2C%20at%20and%20out%20of%20the%20angular%20momentum%20compensation.%20Results%20show%20that%20domain%20walls%20can%20propagate%20faster%20and%20without%20a%20significant%20distortion%20in%20such%20strips%20in%20contrast%20to%20their%20ferromagnetic%20counterparts.%20Using%20an%20artificial%20system%20based%20on%20a%20straight%20strip%20with%20an%20equivalent%20current%20density%20distribution%2C%20we%20can%20discern%20its%20influence%20on%20the%20wall%20terminal%20velocity%2C%20as%20part%20of%20a%20more%20general%20geometrical%20influence%20due%20to%20the%20curved%20shape.%20Curved%20and%20narrow%20ferrimagnetic%20strips%20are%20promising%20candidates%20for%20designing%20high%20speed%20and%20fast%20response%20spintronic%20circuitry%20based%20on%20current-driven%20domain%20wall%20motion.%22%2C%22date%22%3A%222021-12-3%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffphy.2021.772264%22%2C%22ISSN%22%3A%222296-424X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffphy.2021.772264%5C%2Ffull%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A57Z%22%7D%7D%2C%7B%22key%22%3A%22H7573I4F%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rodr%5Cu00edguez-Garc%5Cu00eda%20and%20Guzman%20De%20Villoria%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRodr%26%23xED%3Bguez-Garc%26%23xED%3Ba%2C%20V.%2C%20%26amp%3B%20Guzman%20De%20Villoria%2C%20R.%20%282021%29.%20Automated%20manufacturing%20of%20bio-inspired%20carbon-fibre%20reinforced%20polymers.%20%26lt%3Bi%26gt%3BComposites%20Part%20B%3A%20Engineering%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B215%26lt%3B%5C%2Fi%26gt%3B%2C%20108795.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.compositesb.2021.108795%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.compositesb.2021.108795%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Automated%20manufacturing%20of%20bio-inspired%20carbon-fibre%20reinforced%20polymers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ver%5Cu00f3nica%22%2C%22lastName%22%3A%22Rodr%5Cu00edguez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberto%22%2C%22lastName%22%3A%22Guzman%20De%20Villoria%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2206%5C%2F2021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.compositesb.2021.108795%22%2C%22ISSN%22%3A%2213598368%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS1359836821001876%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A57Z%22%7D%7D%2C%7B%22key%22%3A%22L89YHJC5%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sakar%20et%20al.%22%2C%22parsedDate%22%3A%222021-06-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSakar%2C%20B.%2C%20Sievers%2C%20S.%2C%20Fern%26%23xE1%3Bndez%20Scarioni%2C%20A.%2C%20Garcia-Sanchez%2C%20F.%2C%20%26%23xD6%3Bztoprak%2C%20%26%23×130%3B.%2C%20Schumacher%2C%20H.%20W.%2C%20%26amp%3B%20%26%23xD6%3Bzt%26%23xFC%3Brk%2C%20O.%20%282021%29.%20A%20Ti%5C%2FPt%5C%2FCo%20Multilayer%20Stack%20for%20Transfer%20Function%20Based%20Magnetic%20Force%20Microscopy%20Calibrations.%20%26lt%3Bi%26gt%3BMagnetochemistry%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B7%26lt%3B%5C%2Fi%26gt%3B%286%29%2C%2078.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fmagnetochemistry7060078%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fmagnetochemistry7060078%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Ti%5C%2FPt%5C%2FCo%20Multilayer%20Stack%20for%20Transfer%20Function%20Based%20Magnetic%20Force%20Microscopy%20Calibrations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Baha%22%2C%22lastName%22%3A%22Sakar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sibylle%22%2C%22lastName%22%3A%22Sievers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Fern%5Cu00e1ndez%20Scarioni%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Garcia-Sanchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu0130lker%22%2C%22lastName%22%3A%22%5Cu00d6ztoprak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hans%20Werner%22%2C%22lastName%22%3A%22Schumacher%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Osman%22%2C%22lastName%22%3A%22%5Cu00d6zt%5Cu00fcrk%22%7D%5D%2C%22abstractNote%22%3A%22Magnetic%20force%20microscopy%20%28MFM%29%20is%20a%20widespread%20technique%20for%20imaging%20magnetic%20structures%20with%20a%20resolution%20of%20some%2010%20nanometers.%20MFM%20can%20be%20calibrated%20to%20obtain%20quantitative%20%28qMFM%29%20spatially%20resolved%20magnetization%20data%20in%20units%20of%20A%5C%2Fm%20by%20determining%20the%20calibrated%20point%20spread%20function%20of%20the%20instrument%2C%20its%20instrument%20calibration%20function%20%28ICF%29%2C%20from%20a%20measurement%20of%20a%20well-known%20reference%20sample.%20Beyond%20quantifying%20the%20MFM%20data%2C%20a%20deconvolution%20of%20the%20MFM%20image%20data%20with%20the%20ICF%20also%20corrects%20the%20smearing%20caused%20by%20the%20finite%20width%20of%20the%20MFM%20tip%20stray%20field%20distribution.%20However%2C%20the%20quality%20of%20the%20calibration%20depends%20critically%20on%20the%20calculability%20of%20the%20magnetization%20distribution%20of%20the%20reference%20sample.%20Here%2C%20we%20discuss%20a%20Ti%5C%2FPt%5C%2FCo%20multilayer%20stack%20that%20shows%20a%20stripe%20domain%20pattern%20as%20a%20suitable%20reference%20material.%20A%20precise%20control%20of%20the%20fabrication%20process%2C%20combined%20with%20a%20characterization%20of%20the%20sample%20micromagnetic%20parameters%2C%20allows%20reliable%20calculation%20of%20the%20sample%5Cu2019s%20magnetic%20stray%20field%2C%20proven%20by%20a%20very%20good%20agreement%20between%20micromagnetic%20simulations%20and%20qMFM%20measurements.%20A%20calibrated%20qMFM%20measurement%20using%20the%20Ti%5C%2FPt%5C%2FCo%20stack%20as%20a%20reference%20sample%20is%20shown%20and%20validated%2C%20and%20the%20application%20area%20for%20quantitative%20MFM%20measurements%20calibrated%20with%20the%20Ti%5C%2FPt%5C%2FCo%20stack%20is%20discussed.%22%2C%22date%22%3A%222021-06-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fmagnetochemistry7060078%22%2C%22ISSN%22%3A%222312-7481%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F2312-7481%5C%2F7%5C%2F6%5C%2F78%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A08Z%22%7D%7D%2C%7B%22key%22%3A%22FQKSEED5%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Silva%20et%20al.%22%2C%22parsedDate%22%3A%222021-01-08%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSilva%2C%20A.%20S.%2C%20S%26%23xE1%3B%2C%20S.%20P.%2C%20Bunyaev%2C%20S.%20A.%2C%20Garcia%2C%20C.%2C%20Sola%2C%20I.%20J.%2C%20Kakazei%2C%20G.%20N.%2C%20Crespo%2C%20H.%2C%20%26amp%3B%20Navas%2C%20D.%20%282021%29.%20Dynamical%20behaviour%20of%20ultrathin%20%5BCoFeB%20%28tCoFeB%29%5C%2FPd%5D%20films%20with%20perpendicular%20magnetic%20anisotropy.%20%26lt%3Bi%26gt%3BScientific%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B11%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%2043.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-020-79632-0%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-020-79632-0%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Dynamical%20behaviour%20of%20ultrathin%20%5BCoFeB%20%28tCoFeB%29%5C%2FPd%5D%20films%20with%20perpendicular%20magnetic%20anisotropy%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ana%20S.%22%2C%22lastName%22%3A%22Silva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sim%5Cu00e3o%20P.%22%2C%22lastName%22%3A%22S%5Cu00e1%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sergey%20A.%22%2C%22lastName%22%3A%22Bunyaev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Garcia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gleb%20N.%22%2C%22lastName%22%3A%22Kakazei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Helder%22%2C%22lastName%22%3A%22Crespo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Navas%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CoFeB-based%20ultrathin%20films%20with%20perpendicular%20magnetic%20anisotropy%20are%20promising%20for%20different%20emerging%20technological%20applications%20such%20as%20nonvolatile%20memories%20with%20low%20power%20consumption%20and%20high-speed%20performance.%20In%20this%20work%2C%20the%20dynamical%20properties%20of%20%5BCoFeB%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20t%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20CoFeB%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5C%2FPd%20%2810%5Cu00a0%5Cu00c5%29%5D%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%205%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20multilayered%20ultrathin%20films%20%281%5Cu00a0%5Cu00c5%5Cu2009%5Cu2264%5Cu2009%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20t%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20CoFeB%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2009%5Cu2264%5Cu20095%5Cu00a0%5Cu00c5%29%20are%20studied%20by%20using%20two%20complementary%20methods%3A%20time-resolved%20magneto-optical%20Kerr%20effect%20and%20broadband%20ferromagnetic%20resonance.%20The%20perpendicular%20magnetization%20is%20confirmed%20for%20multilayers%20with%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20t%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20CoFeB%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2009%5Cu2264%5Cu20094%5Cu00a0%5Cu00c5.%20The%20effective%20perpendicular%20magnetic%20anisotropy%20reaches%20a%20clear%20maximum%20at%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20t%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20CoFeB%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2009%3D%5Cu20093%5Cu00a0%5Cu00c5.%20Further%20increase%20of%20CoFeB%20layer%20thickness%20reduces%20the%20perpendicular%20magnetic%20anisotropy%20and%20the%20magnetization%20became%20in-plane%20oriented%20for%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20t%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20CoFeB%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2009%5Cu2265%5Cu20095%5Cu00a0%5Cu00c5.%20This%20behaviour%20is%20explained%20by%20considering%20competing%20contributions%20from%20surface%20and%20magnetoelastic%20anisotropies.%20It%20was%20also%20found%20that%20the%20effective%20damping%20parameter%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03b1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20eff%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20decreases%20with%20CoFeB%20layer%20thickness%20and%20for%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20t%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20CoFeB%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2009%3D%5Cu20094%5Cu00a0%5Cu00c5%20reaches%20a%20value%20of%20~%5Cu20090.019%20that%20is%20suitable%20for%20microwave%20applications.%22%2C%22date%22%3A%222021-01-08%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-020-79632-0%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-020-79632-0%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A52Z%22%7D%7D%2C%7B%22key%22%3A%22TY62IF58%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sun%20et%20al.%22%2C%22parsedDate%22%3A%222021-02-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSun%2C%20X.%2C%20Sun%2C%20S.%2C%20Romero%2C%20C.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Liu%2C%20F.%2C%20Jia%2C%20Y.%2C%20%26amp%3B%20Chen%2C%20F.%20%282021%29.%20Femtosecond%20laser%20direct%20writing%20of%20depressed%20cladding%20waveguides%20in%20Nd%3AYAG%20with%20%26%23x201C%3Bear-like%26%23x201D%3B%20structures%3A%20fabrication%20and%20laser%20generation.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B29%26lt%3B%5C%2Fi%26gt%3B%283%29%2C%204296.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.417815%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.417815%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Femtosecond%20laser%20direct%20writing%20of%20depressed%20cladding%20waveguides%20in%20Nd%3AYAG%20with%20%5Cu201cear-like%5Cu201d%20structures%3A%20fabrication%20and%20laser%20generation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiaoli%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shuo%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fengqin%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuechen%22%2C%22lastName%22%3A%22Jia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22Low-loss%20depressed%20cladding%20waveguide%20architecture%20is%20highly%20attractive%20for%20improving%20the%20laser%20performance%20of%20waveguide%20lasers.%20We%20report%20on%20the%20design%20and%20fabrication%20of%20the%20%5Cu201cear-like%5Cu201d%20waveguide%20structures%20formed%20by%20a%20set%20of%20parallel%20tracks%20in%20neodymium-doped%20yttrium%20aluminum%20garnet%20%28Nd%3AYAG%29%20crystal%20via%20femtosecond%20laser%20writing.%20The%20obtained%20%5Cu201cear-like%5Cu201d%20waveguides%20are%20with%20more%20symmetric%20mode%20profiles%20and%20lower%20losses%20by%20systematically%20comparing%20the%20guiding%20properties%20of%20two%20kinds%20of%20normal%20cladding%20waveguide.%20Efficient%20waveguide%20lasers%20are%20realized%20based%20on%20the%20designed%20structure%20in%20both%20continuous%20wave%20and%20pulsed%20regimes.%20Combined%20the%20high-gain%20from%20cladding%20waveguide%20and%20special%20%5Cu201cear-like%5Cu201d%20structure%2C%20a%20passively%20fundamentally%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Q%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-switched%20laser%20with%20the%20narrow%20pulse%20width%20and%20the%20high%20repetition%20rate%20has%20been%20obtained%20by%20using%20tin%20diselenide%20%28SnSe%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20as%20saturable%20absorber.%22%2C%22date%22%3A%222021-02-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.417815%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-29-3-4296%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A55Z%22%7D%7D%2C%7B%22key%22%3A%22M6M8ILIB%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sun%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSun%2C%20S.%2C%20Sun%2C%20X.%2C%20Ren%2C%20F.%2C%20Romero%2C%20C.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Jia%2C%20Y.%2C%20%26amp%3B%20Chen%2C%20F.%20%282021%29.%20Tapered%20depressed-cladding%20waveguide%20lasers%20modulated%20by%20Ag%20nanoparticles%20embedded%20in%20SiO2.%20%26lt%3Bi%26gt%3BResults%20in%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B30%26lt%3B%5C%2Fi%26gt%3B%2C%20104897.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.rinp.2021.104897%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.rinp.2021.104897%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tapered%20depressed-cladding%20waveguide%20lasers%20modulated%20by%20Ag%20nanoparticles%20embedded%20in%20SiO2%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shuo%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiaoli%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Ren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuechen%22%2C%22lastName%22%3A%22Jia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2211%5C%2F2021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.rinp.2021.104897%22%2C%22ISSN%22%3A%2222113797%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS2211379721009335%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A28Z%22%7D%7D%2C%7B%22key%22%3A%226NLKNK5F%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sytcevich%20et%20al.%22%2C%22parsedDate%22%3A%222021-05-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSytcevich%2C%20I.%2C%20Guo%2C%20C.%2C%20Mikaelsson%2C%20S.%2C%20Vogelsang%2C%20J.%2C%20Viotti%2C%20A.-L.%2C%20Alonso%2C%20B.%2C%20Romero%2C%20R.%2C%20Guerreiro%2C%20P.%20T.%2C%20Sola%2C%20%26%23xCD%3B.%20J.%2C%20L%26%23×2019%3BHuillier%2C%20A.%2C%20Crespo%2C%20H.%2C%20Miranda%2C%20M.%2C%20%26amp%3B%20Arnold%2C%20C.%20L.%20%282021%29.%20Characterizing%20ultrashort%20laser%20pulses%20with%20second%20harmonic%20dispersion%20scans.%20%26lt%3Bi%26gt%3BJournal%20of%20the%20Optical%20Society%20of%20America%20B%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B38%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%201546.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FJOSAB.412535%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FJOSAB.412535%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Characterizing%20ultrashort%20laser%20pulses%20with%20second%20harmonic%20dispersion%20scans%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ivan%22%2C%22lastName%22%3A%22Sytcevich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chen%22%2C%22lastName%22%3A%22Guo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sara%22%2C%22lastName%22%3A%22Mikaelsson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan%22%2C%22lastName%22%3A%22Vogelsang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anne-Lise%22%2C%22lastName%22%3A%22Viotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjam%5Cu00edn%22%2C%22lastName%22%3A%22Alonso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rosa%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paulo%20T.%22%2C%22lastName%22%3A%22Guerreiro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anne%22%2C%22lastName%22%3A%22L%5Cu2019Huillier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Helder%22%2C%22lastName%22%3A%22Crespo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Miguel%22%2C%22lastName%22%3A%22Miranda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cord%20L.%22%2C%22lastName%22%3A%22Arnold%22%7D%5D%2C%22abstractNote%22%3A%22The%20dispersion%20scan%20%28d-scan%29%20technique%20has%20emerged%20as%20a%20simple-to-implement%20characterization%20method%20for%20ultrashort%20laser%20pulses.%20D-scan%20traces%20are%20intuitive%20to%20interpret%20and%20retrieval%20algorithms%20that%20are%20both%20fast%20and%20robust%20have%20been%20developed%20to%20obtain%20the%20spectral%20phase%20and%20the%20temporal%20pulse%20profile.%20Here%2C%20we%20shortly%20review%20the%20second%20harmonic%20generation%20d-scan%20technique%2C%20focusing%20predominantly%20on%20results%20obtained%20at%20the%20Lund%20Laser%20Centre.%20We%20describe%20and%20compare%20recent%20implementations%20for%20the%20characterization%20of%20few-%20and%20multi-cycle%20pulses%20as%20well%20as%20two%20different%20approaches%20for%20recording%20d-scan%20traces%20in%20a%20single%20shot%2C%20thus%20showing%20the%20versatility%20of%20the%20technique.%22%2C%22date%22%3A%222021-05-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FJOSAB.412535%22%2C%22ISSN%22%3A%220740-3224%2C%201520-8540%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Djosab-38-5-1546%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A22Z%22%7D%7D%2C%7B%22key%22%3A%22GXIYUDIX%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Walker%20et%20al.%22%2C%22parsedDate%22%3A%222021-05-10%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BWalker%2C%20B.%20W.%2C%20Cui%2C%20C.%2C%20Garcia-Sanchez%2C%20F.%2C%20Incorvia%2C%20J.%20A.%20C.%2C%20Hu%2C%20X.%2C%20%26amp%3B%20Friedman%2C%20J.%20S.%20%282021%29.%20Skyrmion%20logic%20clocked%20via%20voltage-controlled%20magnetic%20anisotropy.%20%26lt%3Bi%26gt%3BApplied%20Physics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B118%26lt%3B%5C%2Fi%26gt%3B%2819%29%2C%20192404.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0049024%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0049024%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Skyrmion%20logic%20clocked%20via%20voltage-controlled%20magnetic%20anisotropy%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%20W.%22%2C%22lastName%22%3A%22Walker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Can%22%2C%22lastName%22%3A%22Cui%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Garcia-Sanchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean%20Anne%20C.%22%2C%22lastName%22%3A%22Incorvia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuan%22%2C%22lastName%22%3A%22Hu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joseph%20S.%22%2C%22lastName%22%3A%22Friedman%22%7D%5D%2C%22abstractNote%22%3A%22Magnetic%20skyrmions%20are%20exciting%20candidates%20for%20energy-efficient%20computing%20due%20to%20their%20nonvolatility%2C%20detectability%2C%20and%20mobility.%20A%20recent%20proposal%20within%20the%20paradigm%20of%20reversible%20computing%20enables%20large-scale%20circuits%20composed%20of%20directly%20cascaded%20skyrmion%20logic%20gates%2C%20but%20it%20is%20limited%20by%20the%20manufacturing%20difficulty%20and%20energy%20costs%20associated%20with%20the%20use%20of%20notches%20for%20skyrmion%20synchronization.%20To%20overcome%20these%20challenges%2C%20we%2C%20therefore%2C%20propose%20a%20skyrmion%20logic%20synchronized%20via%20modulation%20of%20voltage-controlled%20magnetic%20anisotropy%20%28VCMA%29.%20In%20addition%20to%20demonstrating%20the%20principle%20of%20VCMA%20synchronization%20through%20micromagnetic%20simulations%2C%20we%20also%20quantify%20the%20impacts%20of%20current%20density%2C%20skyrmion%20velocity%2C%20and%20anisotropy%20barrier%20height%20on%20skyrmion%20motion.%20Further%20micromagnetic%20results%20demonstrate%20the%20feasibility%20of%20cascaded%20logic%20circuits%20in%20which%20VCMA%20synchronizers%20enable%20clocking%20and%20pipelining%2C%20illustrating%20a%20feasible%20pathway%20toward%20energy-efficient%20large-scale%20computing%20systems%20based%20on%20magnetic%20skyrmions.%22%2C%22date%22%3A%222021-05-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0049024%22%2C%22ISSN%22%3A%220003-6951%2C%201077-3118%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fapl%5C%2Farticle%5C%2F118%5C%2F19%5C%2F192404%5C%2F1062717%5C%2FSkyrmion-logic-clocked-via-voltage-controlled%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A06Z%22%7D%7D%5D%7D
Apiñaniz, J. I., Malko, S., Fedosejevs, R., Cayzac, W., Vaisseau, X., De Luis, D., Gatti, G., McGuffey, C., Bailly-Grandvaux, M., Bhutwala, K., Ospina-Bohorquez, V., Balboa, J., Santos, J. J., Batani, D., Beg, F., Roso, L., Perez-Hernandez, J. A., & Volpe, L. (2021). A quasi-monoenergetic short time duration compact proton source for probing high energy density states of matter. Scientific Reports, 11(1), 6881. https://doi.org/10.1038/s41598-021-86234-x
Boyero-García, R., Zurrón-Cifuentes, O., Plaja, L., & Hernández-García, C. (2021). Transverse phase matching of high-order harmonic generation in single-layer graphene. Optics Express, 29(2), 2488. https://doi.org/10.1364/OE.412639
Caridad, J. M., Tserkezis, C., Santos, J. E., Plochocka, P., Venkatesan, M., Coey, J. M. D., Mortensen, N. A., Rikken, G. L. J. A., & Krstić, V. (2021). Detection of the Faraday Chiral Anisotropy. Physical Review Letters, 126(17), 177401. https://doi.org/10.1103/PhysRevLett.126.177401
Castilla, D., Muñoz, M., Sinusía, M., Yanes, R., & Prieto, J. L. (2021). Large asymmetry in the magnetoresistance loops of ferromagnetic nanostrips induced by Surface Acoustic Waves. Scientific Reports, 11(1), 8586. https://doi.org/10.1038/s41598-021-88113-x
Chang, K.-Y., Huang, L.-C., Asaga, K., Tsai, M.-S., Rego, L., Huang, P.-C., Mashiko, H., Oguri, K., Hernández-García, C., & Chen, M.-C. (2021). High-order nonlinear dipole response characterized by extreme ultraviolet ellipsometry. Optica, 8(4), 484. https://doi.org/10.1364/OPTICA.413531
Cistaro, G., Plaja, L., Martín, F., & Picón, A. (2021). Attosecond x-ray transient absorption spectroscopy in graphene. Physical Review Research, 3(1), 013144. https://doi.org/10.1103/PhysRevResearch.3.013144
Crego, A., Jarque, E. C., & San Roman, J. (2021). Ultrashort visible energetic pulses generated by nonlinear propagation of necklace beams in capillaries. Optics Express, 29(2), 929. https://doi.org/10.1364/OE.411338
Dorney, K. M., Fan, T., Nguyen, Q. L. D., Ellis, J. L., Hickstein, D. D., Brooks, N., Zusin, D., Gentry, C., Hernández-García, C., Kapteyn, H. C., & Murnane, M. M. (2021). Bright, single helicity, high harmonics driven by mid-infrared bicircular laser fields. Optics Express, 29(23), 38119. https://doi.org/10.1364/OE.440813
Fattouhi, M., García-Sánchez, F., Yanes, R., Raposo, V., Martínez, E., & Lopez-Diaz, L. (2021). Electric Field Control of the Skyrmion Hall Effect in Piezoelectric-Magnetic Devices. Physical Review Applied, 16(4), 044035. https://doi.org/10.1103/PhysRevApplied.16.044035
Fischer, M., Caridad, J. M., Sajid, A., Ghaderzadeh, S., Ghorbani-Asl, M., Gammelgaard, L., Bøggild, P., Thygesen, K. S., Krasheninnikov, A. V., Xiao, S., Wubs, M., & Stenger, N. (2021). Controlled generation of luminescent centers in hexagonal boron nitride by irradiation engineering. Science Advances, 7(8), eabe7138. https://doi.org/10.1126/sciadv.abe7138
García-Cabrera, A., Hernández-García, C., & Plaja, L. (2021). Ultrafast sub-nanometer matter-wave temporal Talbot effect. New Journal of Physics, 23(9), 093011. https://doi.org/10.1088/1367-2630/ac1fcc
Guedas, R., Raposo, V., & Prieto, J. L. (2021). Micro and nanostrips in spintronics: How to keep them cool. Journal of Applied Physics, 130(19), 191101. https://doi.org/10.1063/5.0071900
Guralnik, B., Hansen, O., Henrichsen, H. H., Caridad, J. M., Wei, W., Hansen, M. F., Nielsen, P. F., & Petersen, D. H. (2021). Effective electrical resistivity in a square array of oriented square inclusions. Nanotechnology, 32(18), 185706. https://doi.org/10.1088/1361-6528/abdbec
Hassan, N., Saha, D., Linseisen, C. M., Vyas, V., Joslin, M., Pai, A. G., Garcia-Sanchez, F., & Friedman, J. S. (2021). Energy efficiency challenges for all-spin logic. Microelectronics Journal, 110, 105008. https://doi.org/10.1016/j.mejo.2021.105008
Kaiser, A. L., Lidston, D. L., Peterson, S. C., Acauan, L. H., Steiner, S. A., Guzman De Villoria, R., Vanderhout, A. R., Stein, I. Y., & Wardle, B. L. (2021). Substrate adhesion evolves non-monotonically with processing time in millimeter-scale aligned carbon nanotube arrays. Nanoscale, 13(1), 261–271. https://doi.org/10.1039/D0NR05469K
Kifle, E., Loiko, P., Romero, C., De Aldana, J. R. V., Zakharov, V., Gurova, Y., Veniaminov, A., Petrov, V., Griebner, U., Thouroude, R., Laroche, M., Camy, P., Aguiló, M., Díaz, F., & Mateos, X. (2021). Tm 3+ and Ho 3+ colasing in in-band pumped waveguides fabricated by femtosecond laser writing. Optics Letters, 46(1), 122. https://doi.org/10.1364/OL.399546
López-Ripa, M., Alonso, B., Jarabo, S., Salgado-Remacha, F. J., Aguado, J. C., & Sola, Í. J. (2021). Coherent artifact and time-dependent polarization in amplified ultrafast erbium-doped fibre lasers. Optics & Laser Technology, 140, 107018. https://doi.org/10.1016/j.optlastec.2021.107018
Mackenzie, D. M. A., Galbiati, M., De Cerio, X. D., Sahalianov, I. Y., Radchenko, T. M., Sun, J., Peña, D., Gammelgaard, L., Jessen, B. S., Thomsen, J. D., Bøggild, P., Garcia-Lekue, A., Camilli, L., & Caridad, J. M. (2021). Unraveling the electronic properties of graphene with substitutional oxygen. 2D Materials, 8(4), 045035. https://doi.org/10.1088/2053-1583/ac28ab
Martínez-Ojeda, R. M., Hernández-García, C., & Bueno, J. M. (2021). Enhancement of second harmonic microscopy images in collagen-based thick samples using radially polarized laser beams. Optics Communications, 499, 127273. https://doi.org/10.1016/j.optcom.2021.127273
Masciocchi, G., Fattouhi, M., Kehlberger, A., Lopez-Diaz, L., Syskaki, M.-A., & Kläui, M. (2021). Strain-controlled domain wall injection into nanowires for sensor applications. Journal of Applied Physics, 130(18), 183903. https://doi.org/10.1063/5.0069661
Mirani, F., Maffini, A., Casamichiela, F., Pazzaglia, A., Formenti, A., Dellasega, D., Russo, V., Vavassori, D., Bortot, D., Huault, M., Zeraouli, G., Ospina, V., Malko, S., Apiñaniz, J. I., Pérez-Hernández, J. A., De Luis, D., Gatti, G., Volpe, L., Pola, A., & Passoni, M. (2021). Integrated quantitative PIXE analysis and EDX spectroscopy using a laser-driven particle source. Science Advances, 7(3), eabc8660. https://doi.org/10.1126/sciadv.abc8660
Osuna Ruiz, D., Alejos, O., Raposo, V., & Martínez, E. (2021). Current-Driven Domain Wall Motion in Curved Ferrimagnetic Strips Above and Below the Angular Momentum Compensation. Frontiers in Physics, 9, 772264. https://doi.org/10.3389/fphy.2021.772264
Rodríguez-García, V., & Guzman De Villoria, R. (2021). Automated manufacturing of bio-inspired carbon-fibre reinforced polymers. Composites Part B: Engineering, 215, 108795. https://doi.org/10.1016/j.compositesb.2021.108795
Sakar, B., Sievers, S., Fernández Scarioni, A., Garcia-Sanchez, F., Öztoprak, İ., Schumacher, H. W., & Öztürk, O. (2021). A Ti/Pt/Co Multilayer Stack for Transfer Function Based Magnetic Force Microscopy Calibrations. Magnetochemistry, 7(6), 78. https://doi.org/10.3390/magnetochemistry7060078
Silva, A. S., Sá, S. P., Bunyaev, S. A., Garcia, C., Sola, I. J., Kakazei, G. N., Crespo, H., & Navas, D. (2021). Dynamical behaviour of ultrathin [CoFeB (tCoFeB)/Pd] films with perpendicular magnetic anisotropy. Scientific Reports, 11(1), 43. https://doi.org/10.1038/s41598-020-79632-0
Sun, X., Sun, S., Romero, C., Vázquez De Aldana, J. R., Liu, F., Jia, Y., & Chen, F. (2021). Femtosecond laser direct writing of depressed cladding waveguides in Nd:YAG with “ear-like” structures: fabrication and laser generation. Optics Express, 29(3), 4296. https://doi.org/10.1364/OE.417815
Sun, S., Sun, X., Ren, F., Romero, C., Vázquez De Aldana, J. R., Jia, Y., & Chen, F. (2021). Tapered depressed-cladding waveguide lasers modulated by Ag nanoparticles embedded in SiO2. Results in Physics, 30, 104897. https://doi.org/10.1016/j.rinp.2021.104897
Sytcevich, I., Guo, C., Mikaelsson, S., Vogelsang, J., Viotti, A.-L., Alonso, B., Romero, R., Guerreiro, P. T., Sola, Í. J., L’Huillier, A., Crespo, H., Miranda, M., & Arnold, C. L. (2021). Characterizing ultrashort laser pulses with second harmonic dispersion scans. Journal of the Optical Society of America B, 38(5), 1546. https://doi.org/10.1364/JOSAB.412535
Walker, B. W., Cui, C., Garcia-Sanchez, F., Incorvia, J. A. C., Hu, X., & Friedman, J. S. (2021). Skyrmion logic clocked via voltage-controlled magnetic anisotropy. Applied Physics Letters, 118(19), 192404. https://doi.org/10.1063/5.0049024

8111616 N7Z8DZV2 2020 1 apa 50 creator asc 1 7184 https://lumes.usal.es/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A50%2C%22request_next%22%3A50%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22WLRVUY5Y%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Alonso%20et%20al.%22%2C%22parsedDate%22%3A%222020-08-31%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BAlonso%2C%20B.%2C%20Lopez-Quintas%2C%20I.%2C%20Holgado%2C%20W.%2C%20Drevinskas%2C%20R.%2C%20Kazansky%2C%20P.%20G.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20%26amp%3B%20Sola%2C%20%26%23xCD%3B.%20J.%20%282020%29.%20Complete%20spatiotemporal%20and%20polarization%20characterization%20of%20ultrafast%20vector%20beams.%20%26lt%3Bi%26gt%3BCommunications%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B3%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%20151.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs42005-020-00419-w%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs42005-020-00419-w%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Complete%20spatiotemporal%20and%20polarization%20characterization%20of%20ultrafast%20vector%20beams%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjam%5Cu00edn%22%2C%22lastName%22%3A%22Alonso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ignacio%22%2C%22lastName%22%3A%22Lopez-Quintas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Warein%22%2C%22lastName%22%3A%22Holgado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rokas%22%2C%22lastName%22%3A%22Drevinskas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20G.%22%2C%22lastName%22%3A%22Kazansky%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20use%20of%20structured%20ultrashort%20pulses%20with%20coupled%20spatiotemporal%20properties%20is%20emerging%20as%20a%20key%20tool%20for%20ultrafast%20manipulation.%20Ultrafast%20vector%20beams%20are%20opening%20exciting%20opportunities%20in%20different%20fields%20such%20as%20microscopy%2C%20time-resolved%20imaging%2C%20nonlinear%20optics%2C%20particle%20acceleration%20or%20attosecond%20science.%20Here%2C%20we%20implement%20a%20technique%20for%20the%20full%20characterization%20of%20structured%20time-dependent%20polarization%20light%20waveforms%20with%20spatiotemporal%20resolution%2C%20using%20a%20compact%20twofold%20spectral%20interferometer%2C%20based%20on%20in-line%20bulk%20interferometry%20and%20fibre-optic%20coupler%20assisted%20interferometry.%20We%20measure%20structured%20infrared%20femtosecond%20vector%20beams%2C%20including%20radially%20polarized%20beams%20and%20complex-shaped%20beams%20exhibiting%20both%20temporal%20and%20spatial%20evolving%20polarization.%20Our%20measurements%20confirm%20that%20light%20waveforms%20with%20polarization%20evolving%20at%20the%20micrometer%20and%20femtosecond%20scales%20can%20be%20achieved%20through%20the%20use%20of%20structured%20waveplates%20and%20polarization%20gates.%20This%20new%20scale%20of%20measurement%20achieved%20will%20open%20the%20way%20to%20predict%2C%20check%20and%20optimize%20applications%20of%20structured%20vector%20beams%20at%20the%20femtosecond%20and%20micrometer%20scales.%22%2C%22date%22%3A%222020-08-31%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs42005-020-00419-w%22%2C%22ISSN%22%3A%222399-3650%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs42005-020-00419-w%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A44Z%22%7D%7D%2C%7B%22key%22%3A%22B487SMTL%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Alonso%20et%20al.%22%2C%22parsedDate%22%3A%222020-05-11%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BAlonso%2C%20B.%2C%20Holgado%2C%20W.%2C%20%26amp%3B%20Sola%2C%20%26%23xCD%3B.%20J.%20%282020%29.%20Compact%20in-line%20temporal%20measurement%20of%20laser%20pulses%20with%20amplitude%20swing.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B28%26lt%3B%5C%2Fi%26gt%3B%2810%29%2C%2015625.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.386321%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.386321%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Compact%20in-line%20temporal%20measurement%20of%20laser%20pulses%20with%20amplitude%20swing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjam%5Cu00edn%22%2C%22lastName%22%3A%22Alonso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Warein%22%2C%22lastName%22%3A%22Holgado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%5D%2C%22abstractNote%22%3A%22A%20method%20of%20ultrashort%20laser%20pulse%20reconstruction%20is%20presented%2C%20consisting%20on%20the%20analysis%20of%20the%20nonlinear%20signal%20obtained%20from%20the%20interference%20of%20the%20pulse%20with%20a%20replica%20of%20itself%20at%20a%20given%20time%20delay%20while%20varying%20the%20relative%20amplitude%20between%20the%20pulses.%20The%20resulting%20spectral%20traces%20are%20analyzed%20both%20analytically%20and%20numerically%2C%20showing%20the%20encoding%20of%20the%20input%20pulse%20spectral%20phase.%20A%20reconstruction%20algorithm%20is%20discussed%20and%20applied%20to%20extract%20the%20spectral%20phase%20and%2C%20jointly%20to%20the%20measured%20spectral%20amplitude%2C%20reconstructing%20the%20pulse.%20In%20order%20to%20validate%20the%20technique%2C%20an%20experimental%20in-line%20implementation%20of%20the%20characterization%20concept%20is%20compared%20to%20the%20results%20from%20a%20stablished%20technique%2C%20obtaining%20a%20good%20agreement%20at%20different%20input%20pulse%20cases.%20In%20sum%2C%20a%20new%20technique%20is%20presented%2C%20showing%20the%20capability%20to%20reconstruct%20a%20broad%20range%20of%20temporal%20pulse%20durations%20while%20its%20implementation%20is%20robust%20and%20straightforward%2C%20able%20to%20be%20easily%20adapted%20to%20diverse%20pulse%20duration%20and%20central%20wavelength%20ranges.%22%2C%22date%22%3A%222020-05-11%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.386321%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-28-10-15625%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A37Z%22%7D%7D%2C%7B%22key%22%3A%22Q2BA6YEC%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Alonso%20et%20al.%22%2C%22parsedDate%22%3A%222020-04-29%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BAlonso%2C%20B.%2C%20Torres-Peir%26%23xF3%3B%2C%20S.%2C%20Romero%2C%20R.%2C%20Guerreiro%2C%20P.%20T.%2C%20Almagro-Ruiz%2C%20A.%2C%20Mu%26%23xF1%3Boz-Marco%2C%20H.%2C%20P%26%23xE9%3Brez-Mill%26%23xE1%3Bn%2C%20P.%2C%20%26amp%3B%20Crespo%2C%20H.%20%282020%29.%20Detection%20and%20elimination%20of%20pulse%20train%20instabilities%20in%20broadband%20fibre%20lasers%20using%20dispersion%20scan.%20%26lt%3Bi%26gt%3BScientific%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B10%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%207242.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-020-64109-x%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-020-64109-x%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Detection%20and%20elimination%20of%20pulse%20train%20instabilities%20in%20broadband%20fibre%20lasers%20using%20dispersion%20scan%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjam%5Cu00edn%22%2C%22lastName%22%3A%22Alonso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Salvador%22%2C%22lastName%22%3A%22Torres-Peir%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rosa%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paulo%20T.%22%2C%22lastName%22%3A%22Guerreiro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Azahara%22%2C%22lastName%22%3A%22Almagro-Ruiz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H%5Cu00e9ctor%22%2C%22lastName%22%3A%22Mu%5Cu00f1oz-Marco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pere%22%2C%22lastName%22%3A%22P%5Cu00e9rez-Mill%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Helder%22%2C%22lastName%22%3A%22Crespo%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20We%20use%20self-calibrating%20dispersion%5Cu00a0scan%20to%20experimentally%20detect%20and%20quantify%20the%20presence%20of%20pulse%20train%20instabilities%20in%20ultrashort%20laser%20pulse%20trains.%20We%20numerically%20test%20our%20approach%20against%20two%20different%20types%20of%20pulse%20instability%2C%20namely%20second-order%20phase%20fluctuations%20and%20random%20phase%20instability%2C%20where%20the%20introduction%20of%20an%20adequate%20metric%20enables%20univocally%20quantifying%20the%20amount%20of%20instability.%20The%20approach%20is%20experimentally%20demonstrated%20with%20a%20supercontinuum%20fibre%20laser%2C%20where%20we%20observe%20and%20identify%20pulse%20train%20instabilities%20due%20to%20nonlinear%20propagation%20effects%20under%20anomalous%20dispersion%20conditions%20in%20the%20photonic%20crystal%20fibre%20used%20for%20spectral%20broadening.%20By%20replacing%20the%20latter%20with%20an%20all-normal%20dispersion%20fibre%2C%20we%20effectively%20correct%20the%20pulse%20train%20instability%20and%20increase%20the%20bandwidth%20of%20the%20generated%20coherent%20spectrum.%20This%20is%20further%20confirmed%20by%20temporal%20compression%20and%20measurement%20of%20the%20output%20pulses%20down%20to%2015%5Cu2009fs%20using%20dispersion%5Cu00a0scan.%22%2C%22date%22%3A%222020-04-29%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-020-64109-x%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-020-64109-x%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A34Z%22%7D%7D%2C%7B%22key%22%3A%227QGBCABQ%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Alvaredo-Atienza%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BAlvaredo-Atienza%2C%20A.%2C%20Fern%26%23xE1%3Bndez-Bl%26%23xE1%3Bzquez%2C%20J.%20P.%2C%20Castell%2C%20P.%2C%20%26amp%3B%20Guzman%20De%20Villoria%2C%20R.%20%282020%29.%20Production%20of%20graphene%20nanoplate%5C%2Fpolyetheretherketone%20composites%20by%20semi-industrial%20melt-compounding.%20%26lt%3Bi%26gt%3BHeliyon%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B6%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20e03740.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.heliyon.2020.e03740%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.heliyon.2020.e03740%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Production%20of%20graphene%20nanoplate%5C%2Fpolyetheretherketone%20composites%20by%20semi-industrial%20melt-compounding%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Alvaredo-Atienza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juan%20P.%22%2C%22lastName%22%3A%22Fern%5Cu00e1ndez-Bl%5Cu00e1zquez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Castell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Guzman%20De%20Villoria%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2204%5C%2F2020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.heliyon.2020.e03740%22%2C%22ISSN%22%3A%2224058440%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS2405844020305855%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A45Z%22%7D%7D%2C%7B%22key%22%3A%2238739T7L%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Bae%20et%20al.%22%2C%22parsedDate%22%3A%222020-01-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BBae%2C%20J.%20E.%2C%20Park%2C%20T.%20G.%2C%20Kifle%2C%20E.%2C%20Mateos%2C%20X.%2C%20Aguil%26%23xF3%3B%2C%20M.%2C%20D%26%23xED%3Baz%2C%20F.%2C%20Romero%2C%20C.%2C%20Rodr%26%23xED%3Bguez%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%2C%20Lee%2C%20H.%2C%20%26amp%3B%20Rotermund%2C%20F.%20%282020%29.%20Carbon%20nanotube%20Q-switched%20Yb%3AKLuW%20surface%20channel%20waveguide%20lasers.%20%26lt%3Bi%26gt%3BOptics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B45%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%20216.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.45.000216%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.45.000216%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Carbon%20nanotube%20Q-switched%20Yb%3AKLuW%20surface%20channel%20waveguide%20lasers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ji%20Eun%22%2C%22lastName%22%3A%22Bae%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tae%20Gwan%22%2C%22lastName%22%3A%22Park%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esrom%22%2C%22lastName%22%3A%22Kifle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Mateos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Magdalena%22%2C%22lastName%22%3A%22Aguil%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesc%22%2C%22lastName%22%3A%22D%5Cu00edaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%22%2C%22lastName%22%3A%22Rodr%5Cu00edguez%20V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hansuek%22%2C%22lastName%22%3A%22Lee%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabian%22%2C%22lastName%22%3A%22Rotermund%22%7D%5D%2C%22abstractNote%22%3A%22A%20channel%20waveguide%20%28WG%29%20buried%20immediately%20below%20the%20surface%20of%20a%20Yb%3AKLuW%20crystal%20is%20used%20as%20a%20laser%20gain%20medium%20for%20passive%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Q%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-switching%20by%20both%20evanescent-%20and%20direct-field%20interactions%20with%20single-walled%20carbon%20nanotubes%20%28SWCNTs%29%20near%201040%5Cu00a0nm.%20The%20SWCNTs%20used%20as%20saturable%20absorbers%20%28SAs%29%20are%20deposited%20on%20top%20of%20the%20half-ring-type%20channel%20WG%20fabricated%20via%20femtosecond%20direct%20laser%20writing.%20The%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Q%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-switched%20WG%20laser%20delivers%2088.5%5Cu00a0ns%20pulses%20at%20a%201.16%5Cu00a0MHz%20repetition%20rate%20with%20a%20maximum%20average%20output%20power%20of%20680%5Cu00a0mW.%20For%20the%20two%20different%20interaction%20schemes%20with%20SWCNT-SAs%2C%20the%20pulse%20characteristics%2C%20depending%20on%20the%20output%20coupling%20ratio%20and%20absorbed%20pump%20power%2C%20are%5Cu00a0experimentally%20investigated%20and%20compared%20to%20the%20results%20of%20theoretical%20analyses%20of%20the%20SA%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Q%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-switched%20operation.%22%2C%22date%22%3A%222020-01-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOL.45.000216%22%2C%22ISSN%22%3A%220146-9592%2C%201539-4794%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dol-45-1-216%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A12Z%22%7D%7D%2C%7B%22key%22%3A%22HKHL3822%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Bae%20et%20al.%22%2C%22parsedDate%22%3A%222020-06-08%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BBae%2C%20J.%20E.%2C%20Mateos%2C%20X.%2C%20Aguil%26%23xF3%3B%2C%20M.%2C%20D%26%23xED%3Baz%2C%20F.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Romero%2C%20C.%2C%20Lee%2C%20H.%2C%20%26amp%3B%20Rotermund%2C%20F.%20%282020%29.%20Transition%20of%20pulsed%20operation%20from%20Q-switching%20to%20continuous-wave%20mode-locking%20in%20a%20Yb%3AKLuW%20waveguide%20laser.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B28%26lt%3B%5C%2Fi%26gt%3B%2812%29%2C%2018027.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.395701%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.395701%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Transition%20of%20pulsed%20operation%20from%20Q-switching%20to%20continuous-wave%20mode-locking%20in%20a%20Yb%3AKLuW%20waveguide%20laser%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ji%20Eun%22%2C%22lastName%22%3A%22Bae%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Mateos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Magdalena%22%2C%22lastName%22%3A%22Aguil%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesc%22%2C%22lastName%22%3A%22D%5Cu00edaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20Rodr%5Cu00edguez%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hansuek%22%2C%22lastName%22%3A%22Lee%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabian%22%2C%22lastName%22%3A%22Rotermund%22%7D%5D%2C%22abstractNote%22%3A%22We%20report%20on%20the%20diverse%20pulsed%20operation%20regimes%20of%20a%20femtosecond-laser-written%20Yb%3AKLuW%20channel%20waveguide%20laser%20emitting%20near%201040%5Cu2005nm.%20By%20the%20precise%20position%20tuning%20of%20a%20carbon-nanotube-coated%20saturable%20absorber%20%28SA%29%20mirror%2C%20the%20transition%20of%20the%20pulsed%20operation%20from%20Q-switching%2C%20Q-switched%20mode-locking%20and%20finally%20sub-GHz%20continuous-wave%20mode-locking%20are%20obtained%20based%20on%20the%20interplay%20of%20dispersion%20and%20mode%20area%20control.%20The%20Q-switched%20pulses%20exhibit%20typical%20fast%20SA%20Q-switched%20pulse%20characteristics%20depending%20on%20absorbed%20pump%20powers.%20In%20the%20Q-switched%20mode-locking%2C%20amplitude%20modulations%20of%20the%20mode-locked%20pulses%20on%20the%20Q-switched%20envelope%20are%20observed.%20The%20radio-frequency%20spectrum%20represents%20the%20coexistence%20of%20Q-switching%20and%20mode-locking%20signals.%20In%20the%20purely%20mode-locked%20operation%2C%20the%20waveguide%20laser%20generates%202.05-ps%20pulses%20at%200.5%5Cu2005GHz.%22%2C%22date%22%3A%222020-06-08%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.395701%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-28-12-18027%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A59Z%22%7D%7D%2C%7B%22key%22%3A%22ETC5W9IH%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Brigner%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BBrigner%2C%20W.%20H.%2C%20Hu%2C%20X.%2C%20Hassan%2C%20N.%2C%20Jiang-Wei%2C%20L.%2C%20Bennett%2C%20C.%20H.%2C%20Garcia-Sanchez%2C%20F.%2C%20Akinola%2C%20O.%2C%20Pasquale%2C%20M.%2C%20Marinella%2C%20M.%20J.%2C%20Incorvia%2C%20J.%20A.%20C.%2C%20%26amp%3B%20Friedman%2C%20J.%20S.%20%282020%29.%20Three%20Artificial%20Spintronic%20Leaky%20Integrate-and-Fire%20Neurons.%20%26lt%3Bi%26gt%3BSPIN%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B10%26lt%3B%5C%2Fi%26gt%3B%2802%29%2C%202040003.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1142%5C%2FS2010324720400032%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1142%5C%2FS2010324720400032%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Three%20Artificial%20Spintronic%20Leaky%20Integrate-and-Fire%20Neurons%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wesley%20H.%22%2C%22lastName%22%3A%22Brigner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuan%22%2C%22lastName%22%3A%22Hu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Naimul%22%2C%22lastName%22%3A%22Hassan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucian%22%2C%22lastName%22%3A%22Jiang-Wei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%20H.%22%2C%22lastName%22%3A%22Bennett%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Garcia-Sanchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Otitoaleke%22%2C%22lastName%22%3A%22Akinola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Massimo%22%2C%22lastName%22%3A%22Pasquale%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20J.%22%2C%22lastName%22%3A%22Marinella%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean%20Anne%20C.%22%2C%22lastName%22%3A%22Incorvia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joseph%20S.%22%2C%22lastName%22%3A%22Friedman%22%7D%5D%2C%22abstractNote%22%3A%22Due%20to%20their%20nonvolatility%20and%20intrinsic%20current%20integration%20capabilities%2C%20spintronic%20devices%20that%20rely%20on%20domain%20wall%20%28DW%29%20motion%20through%20a%20free%20ferromagnetic%20track%20have%20garnered%20significant%20interest%20in%20the%20field%20of%20neuromorphic%20computing.%20Although%20a%20number%20of%20such%20devices%20have%20already%20been%20proposed%2C%20they%20require%20the%20use%20of%20external%20circuitry%20to%20implement%20several%20important%20neuronal%20behaviors.%20As%20such%2C%20they%20are%20likely%20to%20result%20in%20either%20a%20decrease%20in%20energy%20efficiency%2C%20an%20increase%20in%20fabrication%20complexity%2C%20or%20even%20both.%20To%20resolve%20this%20issue%2C%20we%20have%20proposed%20three%20individual%20neurons%20that%20are%20capable%20of%20performing%20these%20functionalities%20without%20the%20use%20of%20any%20external%20circuitry.%20To%20implement%20leaking%2C%20the%20first%20neuron%20uses%20a%20dipolar%20coupling%20field%2C%20the%20second%20uses%20an%20anisotropy%20gradient%20and%20the%20third%20uses%20shape%20variations%20of%20the%20DW%20track.%22%2C%22date%22%3A%2206%5C%2F2020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1142%5C%2FS2010324720400032%22%2C%22ISSN%22%3A%222010-3247%2C%202010-3255%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.worldscientific.com%5C%2Fdoi%5C%2F10.1142%5C%2FS2010324720400032%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A25Z%22%7D%7D%2C%7B%22key%22%3A%227Y5ID5N6%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Castilla%20et%20al.%22%2C%22parsedDate%22%3A%222020-06-10%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCastilla%2C%20D.%2C%20Yanes%2C%20R.%2C%20Sinus%26%23xED%3Ba%2C%20M.%2C%20Fuentes%2C%20G.%2C%20Grandal%2C%20J.%2C%20Maicas%2C%20M.%2C%20%26%23xC1%3Blvarez-Arenas%2C%20T.%20E.%20G.%2C%20Mu%26%23xF1%3Boz%2C%20M.%2C%20Torres%2C%20L.%2C%20L%26%23xF3%3Bpez%2C%20L.%2C%20%26amp%3B%20Prieto%2C%20J.%20L.%20%282020%29.%20Magnetization%20process%20of%20a%20ferromagnetic%20nanostrip%20under%20the%20influence%20of%20a%20surface%20acoustic%20wave.%20%26lt%3Bi%26gt%3BScientific%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B10%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%209413.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-020-66144-0%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-020-66144-0%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Magnetization%20process%20of%20a%20ferromagnetic%20nanostrip%20under%20the%20influence%20of%20a%20surface%20acoustic%20wave%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Castilla%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roc%5Cu00edo%22%2C%22lastName%22%3A%22Yanes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Miguel%22%2C%22lastName%22%3A%22Sinus%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gonzalo%22%2C%22lastName%22%3A%22Fuentes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%22%2C%22lastName%22%3A%22Grandal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marco%22%2C%22lastName%22%3A%22Maicas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tom%5Cu00e1s%20E.%20G.%22%2C%22lastName%22%3A%22%5Cu00c1lvarez-Arenas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manuel%22%2C%22lastName%22%3A%22Mu%5Cu00f1oz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Torres%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22L%5Cu00f3pez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20L.%22%2C%22lastName%22%3A%22Prieto%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Surface%20Acoustic%20Waves%20%28SAW%29%20are%20one%20of%20the%20possible%20solutions%20to%20target%20the%20challenges%20faced%20by%20modern%20spintronic%20devices.%20The%20stress%20carried%20by%20the%20SAW%20can%20decrease%20the%20current%20required%20to%20achieve%20magnetic%20switching%20or%20domain%20wall%20movement%20by%20spin%20transfer%20torque.%20Although%20the%20last%20decade%20has%20produced%20very%20relevant%20results%20in%20this%20field%2C%20it%20is%20still%20important%20to%20study%20the%20effects%20of%20a%20SAW%20on%20the%20basic%20unit%20of%20many%20spintronic%20devices%2C%20a%20ferromagnetic%20nanostrip.%20In%20this%20work%2C%20we%20perform%20a%20complete%20set%20of%20measurements%20and%20simulations%20to%20characterize%20the%20magnetization%20process%20of%20a%20Ni%20nanostrip%20under%20the%20influence%20of%20a%20SAW.%20We%20find%20that%20the%20SAW%20increases%20the%20mobility%20and%20the%20depinning%20ability%20of%20the%20magnetic%20domain%20walls%20and%20consequently%2C%20promotes%20a%20sharper%20approach%20to%20saturation%20and%20substantially%20decreases%20coercivity.%20We%20have%20also%20found%20other%20two%20interesting%20effects.%20When%20the%20SAW%20has%20sufficient%20energy%2C%20is%20able%20to%20trigger%20irreversible%20transitions%20even%20before%20switching%20the%20direction%20of%20the%20external%20magnetic%20field.%20Additionally%2C%20we%20have%20found%20that%20the%20magnetization%20process%20depends%20on%20the%20direction%20of%20the%20travelling%20SAW.%22%2C%22date%22%3A%222020-06-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-020-66144-0%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-020-66144-0%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A32Z%22%7D%7D%2C%7B%22key%22%3A%22WR7MVJTL%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Claps%20et%20al.%22%2C%22parsedDate%22%3A%222020-02-04%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BClaps%2C%20G.%2C%20Cordella%2C%20F.%2C%20Pacella%2C%20D.%2C%20Romano%2C%20A.%2C%20Murtas%2C%20F.%2C%20Batani%2C%20D.%2C%20Turianska%2C%20O.%2C%20Raffestin%2C%20D.%2C%20Volpe%2C%20L.%2C%20Zerauili%2C%20G.%2C%20Perez-Hernandez%2C%20J.%20A.%2C%20%26amp%3B%20Malko%2C%20S.%20%282020%29.%20Soft%20X-ray%20measurements%20with%20a%20gas%20detector%20coupled%20to%20microchips%20in%20laser-plasma%20experiments%20at%20VEGA-2.%20%26lt%3Bi%26gt%3BJournal%20of%20Instrumentation%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B15%26lt%3B%5C%2Fi%26gt%3B%2802%29%2C%20C02006%26%23×2013%3BC02006.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1748-0221%5C%2F15%5C%2F02%5C%2FC02006%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1748-0221%5C%2F15%5C%2F02%5C%2FC02006%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Soft%20X-ray%20measurements%20with%20a%20gas%20detector%20coupled%20to%20microchips%20in%20laser-plasma%20experiments%20at%20VEGA-2%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G%22%2C%22lastName%22%3A%22Claps%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Cordella%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Pacella%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Romano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Murtas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Batani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Turianska%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Raffestin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Volpe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Zerauili%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.A.%22%2C%22lastName%22%3A%22Perez-Hernandez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Malko%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-02-04%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1748-0221%5C%2F15%5C%2F02%5C%2FC02006%22%2C%22ISSN%22%3A%221748-0221%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1748-0221%5C%2F15%5C%2F02%5C%2FC02006%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T12%3A19%3A41Z%22%7D%7D%2C%7B%22key%22%3A%22TX94SKXM%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22De%20Las%20Heras%20et%20al.%22%2C%22parsedDate%22%3A%222020-07-09%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BDe%20Las%20Heras%2C%20A.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20%26amp%3B%20Plaja%2C%20L.%20%282020%29.%20Spectral%20signature%20of%20back%20reaction%20in%20correlated%20electron%20dynamics%20in%20intense%20electromagnetic%20fields.%20%26lt%3Bi%26gt%3BPhysical%20Review%20Research%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B2%26lt%3B%5C%2Fi%26gt%3B%283%29%2C%20033047.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevResearch.2.033047%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevResearch.2.033047%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spectral%20signature%20of%20back%20reaction%20in%20correlated%20electron%20dynamics%20in%20intense%20electromagnetic%20fields%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alba%22%2C%22lastName%22%3A%22De%20Las%20Heras%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-7-9%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevResearch.2.033047%22%2C%22ISSN%22%3A%222643-1564%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevResearch.2.033047%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A15Z%22%7D%7D%2C%7B%22key%22%3A%22PFTK93G5%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dieny%20et%20al.%22%2C%22parsedDate%22%3A%222020-08-18%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BDieny%2C%20B.%2C%20Prejbeanu%2C%20I.%20L.%2C%20Garello%2C%20K.%2C%20Gambardella%2C%20P.%2C%20Freitas%2C%20P.%2C%20Lehndorff%2C%20R.%2C%20Raberg%2C%20W.%2C%20Ebels%2C%20U.%2C%20Demokritov%2C%20S.%20O.%2C%20Akerman%2C%20J.%2C%20Deac%2C%20A.%2C%20Pirro%2C%20P.%2C%20Adelmann%2C%20C.%2C%20Anane%2C%20A.%2C%20Chumak%2C%20A.%20V.%2C%20Hirohata%2C%20A.%2C%20Mangin%2C%20S.%2C%20Valenzuela%2C%20S.%20O.%2C%20Onba%26%23x15F%3Bl%26%23×131%3B%2C%20M.%20C.%2C%20%26%23×2026%3B%20Bortolotti%2C%20P.%20%282020%29.%20Opportunities%20and%20challenges%20for%20spintronics%20in%20the%20microelectronics%20industry.%20%26lt%3Bi%26gt%3BNature%20Electronics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B3%26lt%3B%5C%2Fi%26gt%3B%288%29%2C%20446%26%23×2013%3B459.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41928-020-0461-5%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41928-020-0461-5%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Opportunities%20and%20challenges%20for%20spintronics%20in%20the%20microelectronics%20industry%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dieny%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%20L.%22%2C%22lastName%22%3A%22Prejbeanu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Garello%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Gambardella%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Freitas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Lehndorff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%22%2C%22lastName%22%3A%22Raberg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22U.%22%2C%22lastName%22%3A%22Ebels%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20O.%22%2C%22lastName%22%3A%22Demokritov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Akerman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Deac%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Pirro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Adelmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Anane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20V.%22%2C%22lastName%22%3A%22Chumak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Hirohata%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Mangin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sergio%20O.%22%2C%22lastName%22%3A%22Valenzuela%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20Cengiz%22%2C%22lastName%22%3A%22Onba%5Cu015fl%5Cu0131%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22d%5Cu2019Aquino%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Prenat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Finocchio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Lopez-Diaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Chantrell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Chubykalo-Fesenko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Bortolotti%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-08-18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41928-020-0461-5%22%2C%22ISSN%22%3A%222520-1131%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41928-020-0461-5%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A23%3A38Z%22%7D%7D%2C%7B%22key%22%3A%22NBGHDLWI%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Garcia-Sanchez%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BGarcia-Sanchez%2C%20F.%2C%20Soares%2C%20G.%2C%20%26amp%3B%20Pasquale%2C%20M.%20%282020%29.%20A%20comparison%20of%20two%20different%20mechanisms%20for%20deterministic%20spin%20orbit%20torque%20magnetization%20switching.%20%26lt%3Bi%26gt%3BJournal%20of%20Magnetism%20and%20Magnetic%20Materials%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B508%26lt%3B%5C%2Fi%26gt%3B%2C%20166700.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jmmm.2020.166700%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jmmm.2020.166700%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20comparison%20of%20two%20different%20mechanisms%20for%20deterministic%20spin%20orbit%20torque%20magnetization%20switching%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Garcia-Sanchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Soares%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Pasquale%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2208%5C%2F2020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.jmmm.2020.166700%22%2C%22ISSN%22%3A%2203048853%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0304885319337680%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A48Z%22%7D%7D%2C%7B%22key%22%3A%22V6WXGWFV%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22G%5Cu00f3mez-G%5Cu00f3mez%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BG%26%23xF3%3Bmez-G%26%23xF3%3Bmez%2C%20A.%2C%20Ram%26%23xED%3Brez%2C%20C.%2C%20Llorente%2C%20J.%2C%20Garcia%2C%20A.%2C%20Moreno%2C%20P.%2C%20Reveron%2C%20H.%2C%20Chevalier%2C%20J.%2C%20Osendi%2C%20M.%20I.%2C%20Belmonte%2C%20M.%2C%20%26amp%3B%20Miranzo%2C%20P.%20%282020%29.%20Improved%20crack%20resistance%20and%20thermal%20conductivity%20of%20cubic%20zirconia%20containing%20graphene%20nanoplatelets.%20%26lt%3Bi%26gt%3BJournal%20of%20the%20European%20Ceramic%20Society%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B40%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%201557%26%23×2013%3B1565.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jeurceramsoc.2019.12.016%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jeurceramsoc.2019.12.016%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Improved%20crack%20resistance%20and%20thermal%20conductivity%20of%20cubic%20zirconia%20containing%20graphene%20nanoplatelets%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22G%5Cu00f3mez-G%5Cu00f3mez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Ram%5Cu00edrez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Llorente%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Garcia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Moreno%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Reveron%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Chevalier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.I.%22%2C%22lastName%22%3A%22Osendi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Belmonte%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Miranzo%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2204%5C%2F2020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.jeurceramsoc.2019.12.016%22%2C%22ISSN%22%3A%2209552219%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS095522191930860X%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A26Z%22%7D%7D%2C%7B%22key%22%3A%22ZB4R2LSC%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Grillo%20et%20al.%22%2C%22parsedDate%22%3A%222020-03-18%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BGrillo%2C%20A.%2C%20Di%20Bartolomeo%2C%20A.%2C%20Urban%2C%20F.%2C%20Passacantando%2C%20M.%2C%20Caridad%2C%20J.%20M.%2C%20Sun%2C%20J.%2C%20%26amp%3B%20Camilli%2C%20L.%20%282020%29.%20Observation%20of%202D%20Conduction%20in%20Ultrathin%20Germanium%20Arsenide%20Field-Effect%20Transistors.%20%26lt%3Bi%26gt%3BACS%20Applied%20Materials%20%26amp%3B%20Interfaces%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B12%26lt%3B%5C%2Fi%26gt%3B%2811%29%2C%2012998%26%23×2013%3B13004.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.0c00348%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.0c00348%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Observation%20of%202D%20Conduction%20in%20Ultrathin%20Germanium%20Arsenide%20Field-Effect%20Transistors%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessandro%22%2C%22lastName%22%3A%22Grillo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Di%20Bartolomeo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesca%22%2C%22lastName%22%3A%22Urban%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maurizio%22%2C%22lastName%22%3A%22Passacantando%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jose%20M.%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jianbo%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Camilli%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-03-18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsami.0c00348%22%2C%22ISSN%22%3A%221944-8244%2C%201944-8252%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsami.0c00348%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A08Z%22%7D%7D%2C%7B%22key%22%3A%22LFINU9M7%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Herrera%20Diez%20et%20al.%22%2C%22parsedDate%22%3A%222020-08-10%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BHerrera%20Diez%2C%20L.%2C%20Ummelen%2C%20F.%2C%20Jeudy%2C%20V.%2C%20Durin%2C%20G.%2C%20Lopez-Diaz%2C%20L.%2C%20Diaz-Pardo%2C%20R.%2C%20Casiraghi%2C%20A.%2C%20Agnus%2C%20G.%2C%20Bouville%2C%20D.%2C%20Langer%2C%20J.%2C%20Ocker%2C%20B.%2C%20Lavrijsen%2C%20R.%2C%20Swagten%2C%20H.%20J.%20M.%2C%20%26amp%3B%20Ravelosona%2C%20D.%20%282020%29.%20Magnetic%20domain%20wall%20curvature%20induced%20by%20wire%20edge%20pinning.%20%26lt%3Bi%26gt%3BApplied%20Physics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B117%26lt%3B%5C%2Fi%26gt%3B%286%29%2C%20062406.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0010798%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0010798%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Magnetic%20domain%20wall%20curvature%20induced%20by%20wire%20edge%20pinning%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Herrera%20Diez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Ummelen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Jeudy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Durin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Lopez-Diaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Diaz-Pardo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Casiraghi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Agnus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Bouville%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Langer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Ocker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Lavrijsen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%20J.%20M.%22%2C%22lastName%22%3A%22Swagten%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Ravelosona%22%7D%5D%2C%22abstractNote%22%3A%22In%20this%20study%2C%20we%20report%20on%20the%20analysis%20of%20the%20magnetic%20domain%20wall%20%28DW%29%20curvature%20due%20to%20magnetic%20field%20induced%20motion%20in%20Ta%5C%2FCoFeB%5C%2FMgO%20and%20Pt%5C%2FCo%5C%2FPt%20wires%20with%20perpendicular%20magnetic%20anisotropy.%20In%20wires%20of%2020%5Cu2009%5Cu03bcm%20and%2025%5Cu2009%5Cu03bcm%2C%20a%20large%20edge%20pinning%20potential%20produces%20the%20anchoring%20of%20the%20DW%20ends%20to%20the%20wire%20edges%2C%20which%20is%20evidenced%20as%20a%20significant%20curvature%20of%20the%20DW%20front%20as%20it%20propagates.%20As%20the%20driving%20magnetic%20field%20is%20increased%2C%20the%20curvature%20reduces%20as%20a%20result%20of%20the%20system%20moving%20away%20from%20the%20creep%20regime%20of%20DW%20motion%2C%20which%20implies%20a%20weaker%20dependence%20of%20the%20DW%20dynamics%20on%20the%20interaction%20between%20the%20DW%20and%20the%20wire%20edge%20defects.%20A%20simple%20model%20is%20derived%20to%20describe%20the%20dependence%20of%20the%20DW%20curvature%20on%20the%20driving%20magnetic%20field%20and%20allows%20us%20to%20extract%20the%20parameter%20%5Cu03c3E%2C%20which%20accounts%20for%20the%20strength%20of%20the%20edge%20pinning%20potential.%20The%20model%20describes%20well%20the%20systems%20with%20both%20weak%20and%20strong%20bulk%20pinning%20potentials%20like%20Ta%5C%2FCoFeB%5C%2FMgO%20and%20Pt%5C%2FCo%5C%2FPt%2C%20respectively.%20This%20provides%20a%20means%20to%20quantify%20the%20effect%20of%20edge%20pinning%20induced%20DW%20curvature%20on%20magnetic%20DW%20dynamics.%22%2C%22date%22%3A%222020-08-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0010798%22%2C%22ISSN%22%3A%220003-6951%2C%201077-3118%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fapl%5C%2Farticle%5C%2F117%5C%2F6%5C%2F062406%5C%2F39393%5C%2FMagnetic-domain-wall-curvature-induced-by-wire%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A14Z%22%7D%7D%2C%7B%22key%22%3A%22PQHG67M4%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Husain%20et%20al.%22%2C%22parsedDate%22%3A%222020-09-09%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BHusain%2C%20S.%2C%20Chen%2C%20X.%2C%20Gupta%2C%20R.%2C%20Behera%2C%20N.%2C%20Kumar%2C%20P.%2C%20Edvinsson%2C%20T.%2C%20Garc%26%23xED%3Ba-S%26%23xE1%3Bnchez%2C%20F.%2C%20Brucas%2C%20R.%2C%20Chaudhary%2C%20S.%2C%20Sanyal%2C%20B.%2C%20Svedlindh%2C%20P.%2C%20%26amp%3B%20Kumar%2C%20A.%20%282020%29.%20Large%20Damping-Like%20Spin%26%23×2013%3BOrbit%20Torque%20in%20a%202D%20Conductive%201T-TaS%20%26lt%3Bsub%26gt%3B2%26lt%3B%5C%2Fsub%26gt%3B%20Monolayer.%20%26lt%3Bi%26gt%3BNano%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B20%26lt%3B%5C%2Fi%26gt%3B%289%29%2C%206372%26%23×2013%3B6380.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.0c01955%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.0c01955%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Large%20Damping-Like%20Spin%5Cu2013Orbit%20Torque%20in%20a%202D%20Conductive%201T-TaS%20%3Csub%3E2%3C%5C%2Fsub%3E%20Monolayer%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sajid%22%2C%22lastName%22%3A%22Husain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xin%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rahul%22%2C%22lastName%22%3A%22Gupta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nilamani%22%2C%22lastName%22%3A%22Behera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Prabhat%22%2C%22lastName%22%3A%22Kumar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tomas%22%2C%22lastName%22%3A%22Edvinsson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Garc%5Cu00eda-S%5Cu00e1nchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rimantas%22%2C%22lastName%22%3A%22Brucas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sujeet%22%2C%22lastName%22%3A%22Chaudhary%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Biplab%22%2C%22lastName%22%3A%22Sanyal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Svedlindh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ankit%22%2C%22lastName%22%3A%22Kumar%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-09-09%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.nanolett.0c01955%22%2C%22ISSN%22%3A%221530-6984%2C%201530-6992%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facs.nanolett.0c01955%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A27Z%22%7D%7D%2C%7B%22key%22%3A%22MFU64MXU%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kifle%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BKifle%2C%20E.%2C%20Loiko%2C%20P.%2C%20Romero%2C%20C.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Aguil%26%23xF3%3B%2C%20M.%2C%20D%26%23xED%3Baz%2C%20F.%2C%20Camy%2C%20P.%2C%20Griebner%2C%20U.%2C%20Petrov%2C%20V.%2C%20%26amp%3B%20Mateos%2C%20X.%20%282020%29.%20Watt-level%20ultrafast%20laser%20inscribed%20thulium%20waveguide%20lasers.%20%26lt%3Bi%26gt%3BProgress%20in%20Quantum%20Electronics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B72%26lt%3B%5C%2Fi%26gt%3B%2C%20100266.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.pquantelec.2020.100266%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.pquantelec.2020.100266%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Watt-level%20ultrafast%20laser%20inscribed%20thulium%20waveguide%20lasers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esrom%22%2C%22lastName%22%3A%22Kifle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pavel%22%2C%22lastName%22%3A%22Loiko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20Rodr%5Cu00edguez%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Magdalena%22%2C%22lastName%22%3A%22Aguil%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesc%22%2C%22lastName%22%3A%22D%5Cu00edaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrice%22%2C%22lastName%22%3A%22Camy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Uwe%22%2C%22lastName%22%3A%22Griebner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valentin%22%2C%22lastName%22%3A%22Petrov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Mateos%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2208%5C%2F2020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.pquantelec.2020.100266%22%2C%22ISSN%22%3A%2200796727%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0079672720300203%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A35Z%22%7D%7D%2C%7B%22key%22%3A%22GBPMICPF%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kifle%20et%20al.%22%2C%22parsedDate%22%3A%222020-08-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BKifle%2C%20E.%2C%20Loiko%2C%20P.%2C%20Romero%2C%20C.%2C%20De%20Aldana%2C%20J.%20R.%20V.%2C%20Zakharov%2C%20V.%2C%20Veniaminov%2C%20A.%2C%20Griebner%2C%20U.%2C%20Petrov%2C%20V.%2C%20Camy%2C%20P.%2C%20Braud%2C%20A.%2C%20Aguilo%2C%20M.%2C%20Diaz%2C%20F.%2C%20%26amp%3B%20Mateos%2C%20X.%20%282020%29.%20Ultrafast%20Laser%20Inscription%20and%20%26%23x223C%3B2%20%26%23x3BC%3Bm%20Laser%20Operation%20of%20Y-Branch%20Splitters%20in%20Monoclinic%20Crystals.%20%26lt%3Bi%26gt%3BJournal%20of%20Lightwave%20Technology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B38%26lt%3B%5C%2Fi%26gt%3B%2816%29%2C%204374%26%23×2013%3B4384.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FJLT.2020.2986474%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FJLT.2020.2986474%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ultrafast%20Laser%20Inscription%20and%20%5Cu223c2%20%5Cu03bcm%20Laser%20Operation%20of%20Y-Branch%20Splitters%20in%20Monoclinic%20Crystals%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esrom%22%2C%22lastName%22%3A%22Kifle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pavel%22%2C%22lastName%22%3A%22Loiko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20Rodriguez%20Vazquez%22%2C%22lastName%22%3A%22De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Viktor%22%2C%22lastName%22%3A%22Zakharov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrey%22%2C%22lastName%22%3A%22Veniaminov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Uwe%22%2C%22lastName%22%3A%22Griebner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valentin%22%2C%22lastName%22%3A%22Petrov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrice%22%2C%22lastName%22%3A%22Camy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alain%22%2C%22lastName%22%3A%22Braud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Magdalena%22%2C%22lastName%22%3A%22Aguilo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesc%22%2C%22lastName%22%3A%22Diaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Mateos%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-8-15%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FJLT.2020.2986474%22%2C%22ISSN%22%3A%220733-8724%2C%201558-2213%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F9064918%5C%2F%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A00Z%22%7D%7D%2C%7B%22key%22%3A%22I3XMRCXF%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kifle%20et%20al.%22%2C%22parsedDate%22%3A%222020-07-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BKifle%2C%20E.%2C%20Loiko%2C%20P.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Romero%2C%20C.%2C%20Llamas%2C%20V.%2C%20Serres%2C%20J.%20M.%2C%20Aguil%26%23xF3%3B%2C%20M.%2C%20D%26%23xED%3Baz%2C%20F.%2C%20Zhang%2C%20L.%2C%20Lin%2C%20Z.%2C%20Lin%2C%20H.%2C%20Zhang%2C%20G.%2C%20Zakharov%2C%20V.%2C%20Veniaminov%2C%20A.%2C%20Petrov%2C%20V.%2C%20Griebner%2C%20U.%2C%20Mateos%2C%20X.%2C%20Wang%2C%20L.%2C%20%26amp%3B%20Chen%2C%20W.%20%282020%29.%20Low-loss%20fs-laser-written%20surface%20waveguide%20lasers%20at%20%26gt%3B2%20%26%23xB5%3Bm%20in%20monoclinic%20Tm%20%26lt%3Bsup%26gt%3B3%2B%26lt%3B%5C%2Fsup%26gt%3B%26%23x202F%3B%3AMgWO%20%26lt%3Bsub%26gt%3B4%26lt%3B%5C%2Fsub%26gt%3B.%20%26lt%3Bi%26gt%3BOptics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B45%26lt%3B%5C%2Fi%26gt%3B%2814%29%2C%204060.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.395811%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.395811%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Low-loss%20fs-laser-written%20surface%20waveguide%20lasers%20at%20%3E2%20%5Cu00b5m%20in%20monoclinic%20Tm%20%3Csup%3E3%2B%3C%5C%2Fsup%3E%20%3AMgWO%20%3Csub%3E4%3C%5C%2Fsub%3E%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esrom%22%2C%22lastName%22%3A%22Kifle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pavel%22%2C%22lastName%22%3A%22Loiko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20Rodr%5Cu00edguez%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V%5Cu00edctor%22%2C%22lastName%22%3A%22Llamas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Josep%20Maria%22%2C%22lastName%22%3A%22Serres%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Magdalena%22%2C%22lastName%22%3A%22Aguil%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesc%22%2C%22lastName%22%3A%22D%5Cu00edaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lizhen%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhoubin%22%2C%22lastName%22%3A%22Lin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Haifeng%22%2C%22lastName%22%3A%22Lin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ge%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Viktor%22%2C%22lastName%22%3A%22Zakharov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrey%22%2C%22lastName%22%3A%22Veniaminov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valentin%22%2C%22lastName%22%3A%22Petrov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Uwe%22%2C%22lastName%22%3A%22Griebner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Mateos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Li%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Weidong%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22Surface%20channel%20waveguides%20%28WGs%29%20based%20on%20a%20half-ring%20%2840%5Cu201360-%5Cu00b5m-diameter%29%20depressed-index%20cladding%20%28type%20III%29%20geometry%20are%20fabricated%20in%20monoclinic%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Tm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3A%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20MgWO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%204%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20femtosecond%20%28fs%29%20laser%20writing%20at%20a%20repetition%20rate%20of%201%5Cu00a0kHz.%20The%20WGs%20are%20characterized%20by%20confocal%20laser%20microscopy%20and%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03bc%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-Raman%20spectroscopy.%20A%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Tm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3A%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20MgWO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%204%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20WG%20laser%20generates%20320%5Cu00a0mW%20at%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu223c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202.02%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00b5%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20with%20a%20slope%20efficiency%20of%2064.4%25.%20The%20WG%20emits%20a%20transverse%20single-mode%20and%20linear%20polarization%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%7C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%7C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20A%20remarkable%20low%20loss%20of%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%26lt%3B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200.1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20dB%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20is%20measured%20for%20the%20WG.%20Vibronic%20laser%20emission%20at%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu223c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202.08%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00b5%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20is%20also%20achieved.%22%2C%22date%22%3A%222020-07-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOL.395811%22%2C%22ISSN%22%3A%220146-9592%2C%201539-4794%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dol-45-14-4060%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A02Z%22%7D%7D%2C%7B%22key%22%3A%222ZFS3X8W%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Li%20et%20al.%22%2C%22parsedDate%22%3A%222020-12-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BLi%2C%20L.%2C%20Li%2C%20Z.%2C%20Nie%2C%20W.%2C%20Romero%2C%20C.%2C%20De%20Aldana%2C%20J.%20R.%20V.%2C%20%26amp%3B%20Chen%2C%20F.%20%282020%29.%20Femtosecond-Laser-Written%20S-Curved%20Waveguide%20in%20Nd%3AYAP%20Crystal%3A%20Fabrication%20and%20Multi-Gigahertz%20Lasing.%20%26lt%3Bi%26gt%3BJournal%20of%20Lightwave%20Technology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B38%26lt%3B%5C%2Fi%26gt%3B%2824%29%2C%206845%26%23×2013%3B6852.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FJLT.2020.3015690%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FJLT.2020.3015690%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Femtosecond-Laser-Written%20S-Curved%20Waveguide%20in%20Nd%3AYAP%20Crystal%3A%20Fabrication%20and%20Multi-Gigahertz%20Lasing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lingqi%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ziqi%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Weijie%22%2C%22lastName%22%3A%22Nie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%20Vazquez%22%2C%22lastName%22%3A%22De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-12-15%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FJLT.2020.3015690%22%2C%22ISSN%22%3A%220733-8724%2C%201558-2213%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F9165910%5C%2F%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A44Z%22%7D%7D%2C%7B%22key%22%3A%22RZ45MN64%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Li%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BLi%2C%20L.%2C%20Zhang%2C%20B.%2C%20Romero%2C%20C.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Wang%2C%20L.%2C%20%26amp%3B%20Chen%2C%20F.%20%282020%29.%20Tunable%20violet%20radiation%20in%20a%20quasi-phase-matched%20periodically%20poled%20stoichiometric%20lithium%20tantalate%20waveguide%20by%20direct%20femtosecond%20laser%20writing.%20%26lt%3Bi%26gt%3BResults%20in%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B19%26lt%3B%5C%2Fi%26gt%3B%2C%20103373.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.rinp.2020.103373%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.rinp.2020.103373%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tunable%20violet%20radiation%20in%20a%20quasi-phase-matched%20periodically%20poled%20stoichiometric%20lithium%20tantalate%20waveguide%20by%20direct%20femtosecond%20laser%20writing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22LingQi%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bin%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lei%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2212%5C%2F2020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.rinp.2020.103373%22%2C%22ISSN%22%3A%2222113797%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS2211379720318404%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A24Z%22%7D%7D%2C%7B%22key%22%3A%2266KU5WH2%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Llamas%20et%20al.%22%2C%22parsedDate%22%3A%222020-02-03%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BLlamas%2C%20V.%2C%20Loiko%2C%20P.%2C%20Kifle%2C%20E.%2C%20Romero%2C%20C.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Pan%2C%20Z.%2C%20Serres%2C%20J.%20M.%2C%20Yuan%2C%20H.%2C%20Dai%2C%20X.%2C%20Cai%2C%20H.%2C%20Wang%2C%20Y.%2C%20Zhao%2C%20Y.%2C%20Zakharov%2C%20V.%2C%20Veniaminov%2C%20A.%2C%20Thouroude%2C%20R.%2C%20Laroche%2C%20M.%2C%20Gilles%2C%20H.%2C%20Aguil%26%23xF3%3B%2C%20M.%2C%20D%26%23xED%3Baz%2C%20F.%2C%20%26%23×2026%3B%20Mateos%2C%20X.%20%282020%29.%20Ultrafast%20laser%20inscribed%20waveguide%20lasers%20in%20Tm%3ACALGO%20with%20depressed-index%20cladding.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B28%26lt%3B%5C%2Fi%26gt%3B%283%29%2C%203528.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.384258%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.384258%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ultrafast%20laser%20inscribed%20waveguide%20lasers%20in%20Tm%3ACALGO%20with%20depressed-index%20cladding%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victor%22%2C%22lastName%22%3A%22Llamas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pavel%22%2C%22lastName%22%3A%22Loiko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esrom%22%2C%22lastName%22%3A%22Kifle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhongben%22%2C%22lastName%22%3A%22Pan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Josep%20Maria%22%2C%22lastName%22%3A%22Serres%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hualei%22%2C%22lastName%22%3A%22Yuan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiaojun%22%2C%22lastName%22%3A%22Dai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Huaqiang%22%2C%22lastName%22%3A%22Cai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yicheng%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yongguang%22%2C%22lastName%22%3A%22Zhao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Viktor%22%2C%22lastName%22%3A%22Zakharov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrey%22%2C%22lastName%22%3A%22Veniaminov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Romain%22%2C%22lastName%22%3A%22Thouroude%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathieu%22%2C%22lastName%22%3A%22Laroche%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Herv%5Cu00e9%22%2C%22lastName%22%3A%22Gilles%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Magdalena%22%2C%22lastName%22%3A%22Aguil%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesc%22%2C%22lastName%22%3A%22D%5Cu00edaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Uwe%22%2C%22lastName%22%3A%22Griebner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valentin%22%2C%22lastName%22%3A%22Petrov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrice%22%2C%22lastName%22%3A%22Camy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Mateos%22%7D%5D%2C%22abstractNote%22%3A%22Depressed-index%20buried%20and%20surface%20channel%20waveguides%20%28type%20III%29%20are%20produced%20in%20a%20bulk%203.5%20at.%25%20Tm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3ACALGO%20crystal%20by%20femtosecond%20direct-laser-writing%20at%20kHz%20repetition%20rate.%20The%20waveguides%20are%20characterized%20by%20confocal%20microscopy%20and%20%5Cu00b5-Raman%20spectroscopy.%20Under%20in-band-pumping%20at%201679%20nm%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%206%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2192%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20transition%29%20by%20a%20Raman%20fiber%20laser%2C%20the%20buried%20channel%20waveguide%20laser%20with%20a%20circular%20cladding%20%28diameter%3A%2060%20%5Cu00b5m%29%20generated%20a%20continuous-wave%20output%20power%20of%200.81%20W%20at%201866-1947%20nm%20with%20a%20slope%20efficiency%20of%2071.2%25%20%28versus%20the%20absorbed%20pump%20power%29%20and%20showed%20a%20laser%20threshold%20of%20200%5Cu2005mW.%20The%20waveguide%20propagation%20losses%20were%20as%20low%20as%200.3%5Cu2009%5Cu00b1%5Cu20090.2%5Cu2005dB%5C%2Fcm.%20The%20laser%20performance%20under%20in-band%20pumping%20was%20superior%20compared%20pumping%20at%20%5Cu223c800%5Cu2005nm%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%206%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2192%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20transition%29%2C%20i.e.%2C%20the%20convetional%20pump%20wavelength.%20Vibronic%20laser%20emission%20from%20the%20WG%20laser%20above%202%20%5Cu00b5m%20is%20also%20achieved.%20The%20low-loss%20behavior%2C%20the%20broadband%20emission%20properties%20and%20good%20power%20scaling%20capabilities%20indicate%20the%20suitability%20of%20Tm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3ACALGO%20waveguides%20for%20mode-locked%20laser%20operation%20at%20%5Cu223c2%20%5Cu00b5m.%22%2C%22date%22%3A%222020-02-03%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.384258%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-28-3-3528%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A11Z%22%7D%7D%2C%7B%22key%22%3A%22ZLJHNII4%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Longman%20et%20al.%22%2C%22parsedDate%22%3A%222020-04-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BLongman%2C%20A.%2C%20Salgado%2C%20C.%2C%20Zeraouli%2C%20G.%2C%20Api%26%23xF1%3Baniz%2C%20J.%20I.%2C%20Antonio%20P%26%23xE9%3Brez-Hern%26%23xE1%3Bndez%2C%20J.%2C%20Eltahlawy%2C%20M.%20K.%2C%20Volpe%2C%20L.%2C%20%26amp%3B%20Fedosejevs%2C%20R.%20%282020%29.%20Off-axis%20spiral%20phase%20mirrors%20for%20generating%20high-intensity%20optical%20vortices.%20%26lt%3Bi%26gt%3BOptics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B45%26lt%3B%5C%2Fi%26gt%3B%288%29%2C%202187.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.387363%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.387363%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Off-axis%20spiral%20phase%20mirrors%20for%20generating%20high-intensity%20optical%20vortices%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22Longman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Salgado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ghassan%22%2C%22lastName%22%3A%22Zeraouli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jon%20I.%22%2C%22lastName%22%3A%22Api%5Cu00f1aniz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jose%22%2C%22lastName%22%3A%22Antonio%20P%5Cu00e9rez-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20Khairy%22%2C%22lastName%22%3A%22Eltahlawy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Volpe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Fedosejevs%22%7D%5D%2C%22abstractNote%22%3A%22In%20this%20work%2C%20we%20present%20a%20novel%2C%20to%20the%20best%20of%20our%20knowledge%2C%20and%20practical%20method%20for%20generating%20optical%20vortices%20in%20high-power%20laser%20systems.%20Off-axis%20spiral%20phase%20mirrors%20are%20used%20at%20oblique%20angles%20of%20incidence%20in%20the%20beam%20path%20after%20amplification%20and%20compression%2C%20allowing%20for%20the%20generation%20of%20high-power%20optical%20vortices%20in%20almost%20any%20laser%20system.%20An%20off-axis%20configuration%20is%20possible%20via%20modification%20of%20the%20azimuthal%20gradient%20of%20the%20spiral%20phase%20helix%20and%20is%20demonstrated%20with%20a%20simple%20model%20using%20a%20discrete%20spiral%20staircase.%20This%20work%20presents%20the%20design%2C%20fabrication%2C%20and%20implementation%20of%20off-axis%20spiral%20phase%20mirrors%20in%20both%20low-%20and%20high-power%20laser%20systems.%22%2C%22date%22%3A%222020-04-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOL.387363%22%2C%22ISSN%22%3A%220146-9592%2C%201539-4794%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dol-45-8-2187%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A25Z%22%7D%7D%2C%7B%22key%22%3A%22X39Q6XS9%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Lopez-Quintas%20et%20al.%22%2C%22parsedDate%22%3A%222020-09-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BLopez-Quintas%2C%20I.%2C%20Holgado%2C%20W.%2C%20Drevinskas%2C%20R.%2C%20Kazansky%2C%20P.%20G.%2C%20Sola%2C%20%26%23xCD%3B.%20J.%2C%20%26amp%3B%20Alonso%2C%20B.%20%282020%29.%20Optical%20vortex%20production%20mediated%20by%20azimuthal%20index%20of%20radial%20polarization.%20%26lt%3Bi%26gt%3BJournal%20of%20Optics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B22%26lt%3B%5C%2Fi%26gt%3B%289%29%2C%20095402.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2040-8986%5C%2Faba813%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2040-8986%5C%2Faba813%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Optical%20vortex%20production%20mediated%20by%20azimuthal%20index%20of%20radial%20polarization%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ignacio%22%2C%22lastName%22%3A%22Lopez-Quintas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Warein%22%2C%22lastName%22%3A%22Holgado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rokas%22%2C%22lastName%22%3A%22Drevinskas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20G%22%2C%22lastName%22%3A%22Kazansky%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J%22%2C%22lastName%22%3A%22Sola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjam%5Cu00edn%22%2C%22lastName%22%3A%22Alonso%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-09-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F2040-8986%5C%2Faba813%22%2C%22ISSN%22%3A%222040-8978%2C%202040-8986%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F2040-8986%5C%2Faba813%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A04Z%22%7D%7D%2C%7B%22key%22%3A%223G8ET87F%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Lv%20et%20al.%22%2C%22parsedDate%22%3A%222020-03-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BLv%2C%20J.%2C%20Hong%2C%20B.%2C%20Tan%2C%20Y.%2C%20Chen%2C%20F.%2C%20Rodr%26%23xED%3Bguez%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%2C%20%26amp%3B%20Wang%2C%20G.%20P.%20%282020%29.%20Mid-infrared%20waveguiding%20in%20three-dimensional%20microstructured%20optical%20waveguides%20fabricated%20by%20femtosecond-laser%20writing%20and%20phosphoric%20acid%20etching.%20%26lt%3Bi%26gt%3BPhotonics%20Research%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B8%26lt%3B%5C%2Fi%26gt%3B%283%29%2C%20257.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FPRJ.380215%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FPRJ.380215%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Mid-infrared%20waveguiding%20in%20three-dimensional%20microstructured%20optical%20waveguides%20fabricated%20by%20femtosecond-laser%20writing%20and%20phosphoric%20acid%20etching%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jinman%22%2C%22lastName%22%3A%22Lv%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Binbin%22%2C%22lastName%22%3A%22Hong%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yang%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%22%2C%22lastName%22%3A%22Rodr%5Cu00edguez%20V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guo%20Ping%22%2C%22lastName%22%3A%22Wang%22%7D%5D%2C%22abstractNote%22%3A%22We%20fabricated%20a%20three-dimensional%20microstructured%20optical%20waveguide%20%28MOW%29%20in%20a%20single-crystal%20using%20femtosecond-laser%20writing%20and%20phosphoric%20acid%20etching%20techniques%2C%20and%20observed%20excellent%20midinfrared%20waveguiding%20performance%20with%20low%20loss%20of%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu223c%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200.5%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2009%5Cu2009%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20dB%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20Tracks%20with%20a%20periodic%20arrangement%20were%20written%20inside%20the%20yttrium%20aluminum%20garnet%20%28YAG%29%20crystal%20via%20femtosecond%20laser%20inscription%2C%20and%20then%20etched%20by%20the%20phosphoric%20acid%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20H%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20PO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%204%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20to%20form%20hollow%20structures.%20The%20evolution%20of%20the%20microstructure%20of%20tracks%20was%20investigated%20in%20detail.%20The%20function%20of%20the%20MOW%20was%20analyzed%20by%20different%20numerical%20methods%2C%20indicating%20the%20proposed%20MOW%20can%20effectively%20operate%20in%20quasi-single-mode%20pattern%20in%20the%20midinfrared%20wavelength%20range%2C%20which%20agrees%20well%20with%20our%20experiment%20results.%22%2C%22date%22%3A%222020-03-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FPRJ.380215%22%2C%22ISSN%22%3A%222327-9125%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dprj-8-3-257%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22YTPKULGC%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mart%5Cu00ednez%20et%20al.%22%2C%22parsedDate%22%3A%222020-01-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BMart%26%23xED%3Bnez%2C%20E.%2C%20Raposo%2C%20V.%2C%20%26amp%3B%20Alejos%2C%20%26%23xD3%3B.%20%282020%29.%20Current%20driven%20domain%20wall%20dynamics%20in%20ferrimagnetic%20strips%20explained%20by%20means%20of%20a%20two%20interacting%20sublattices%20model.%20%26lt%3Bi%26gt%3BAIP%20Advances%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B10%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%20015202.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5130054%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5130054%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Current%20driven%20domain%20wall%20dynamics%20in%20ferrimagnetic%20strips%20explained%20by%20means%20of%20a%20two%20interacting%20sublattices%20model%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Mart%5Cu00ednez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V%5Cu00edctor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00d3scar%22%2C%22lastName%22%3A%22Alejos%22%7D%5D%2C%22abstractNote%22%3A%22The%20current-driven%20domain%20wall%20dynamics%20along%20ferrimagnetic%20elements%20are%20here%20theoretically%20analyzed%20as%20a%20function%20of%20temperature%20by%20means%20of%20micromagnetic%20simulations%20and%20a%20one%20dimensional%20model.%20Contrarily%20to%20conventional%20effective%20approaches%2C%20our%20model%20takes%20into%20account%20the%20two%20coupled%20ferromagnetic%20sublattices%20forming%20the%20ferrimagnetic%20element.%20Although%20the%20model%20is%20suitable%20for%20elements%20with%20asymmetric%20exchange%20interaction%20and%20spin-orbit%20coupling%20effects%20due%20to%20adjacent%20heavy%20metal%20layers%2C%20we%20here%20focus%20our%20attention%20on%20the%20case%20of%20single-layer%20ferrimagnetic%20strips%20where%20domain%20walls%20adopt%20achiral%20Bloch%20configurations%20at%20rest.%20Such%20domain%20walls%20can%20be%20driven%20by%20either%20out-of-plane%20fields%20or%20spin%20transfer%20torques%20upon%20bulk%20current%20injection.%20Our%20results%20indicate%20that%20the%20domain%20wall%20velocity%20is%20optimized%20at%20the%20angular%20compensation%20temperature%20for%20both%20field-driven%20and%20current-driven%20cases.%20Our%20advanced%20models%20allow%20us%20to%20infer%20that%20the%20precession%20of%20the%20internal%20domain%20wall%20moments%20is%20suppressed%20at%20such%20compensation%20temperature%2C%20and%20they%20will%20be%20useful%20to%20interpret%20state-of-the%20art%20experiments%20on%20these%20elements.%22%2C%22date%22%3A%222020-01-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5130054%22%2C%22ISSN%22%3A%222158-3226%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fadv%5C%2Farticle%5C%2F10%5C%2F1%5C%2F015202%5C%2F1076792%5C%2FCurrent-driven-domain-wall-dynamics-in%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22Z6C888YB%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mart%5Cu00ednez%20et%20al.%22%2C%22parsedDate%22%3A%222020-11-04%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BMart%26%23xED%3Bnez%2C%20E.%2C%20Raposo%2C%20V.%2C%20%26amp%3B%20Alejos%2C%20%26%23xD3%3B.%20%282020%29.%20Novel%20interpretation%20of%20recent%20experiments%20on%20the%20dynamics%20of%20domain%20walls%20along%20ferrimagnetic%20strips.%20%26lt%3Bi%26gt%3BJournal%20of%20Physics%3A%20Condensed%20Matter%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B32%26lt%3B%5C%2Fi%26gt%3B%2846%29%2C%20465803.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-648X%5C%2Faba7eb%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-648X%5C%2Faba7eb%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Novel%20interpretation%20of%20recent%20experiments%20on%20the%20dynamics%20of%20domain%20walls%20along%20ferrimagnetic%20strips%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Mart%5Cu00ednez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V%5Cu00edctor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00d3scar%22%2C%22lastName%22%3A%22Alejos%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-11-04%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-648X%5C%2Faba7eb%22%2C%22ISSN%22%3A%220953-8984%2C%201361-648X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-648X%5C%2Faba7eb%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A23Z%22%7D%7D%2C%7B%22key%22%3A%22M8PVVD99%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Morales-Vidal%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BMorales-Vidal%2C%20M.%2C%20Sola%2C%20%26%23xCD%3B.%20J.%2C%20Castillo%2C%20G.%20R.%2C%20R.%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%2C%20%26amp%3B%20Alonso%2C%20B.%20%282020%29.%20Ultrashort%20pulse%20propagation%20through%20depressed-cladding%20channel%20waveguides%20in%20YAG%20crystal%3A%20Spatio-temporal%20characterization.%20%26lt%3Bi%26gt%3BOptics%20%26amp%3B%20Laser%20Technology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B123%26lt%3B%5C%2Fi%26gt%3B%2C%20105898.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.optlastec.2019.105898%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.optlastec.2019.105898%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ultrashort%20pulse%20propagation%20through%20depressed-cladding%20channel%20waveguides%20in%20YAG%20crystal%3A%20Spatio-temporal%20characterization%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marta%22%2C%22lastName%22%3A%22Morales-Vidal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gabriel%20R.%22%2C%22lastName%22%3A%22Castillo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%22%2C%22lastName%22%3A%22R.%20V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjam%5Cu00edn%22%2C%22lastName%22%3A%22Alonso%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2203%5C%2F2020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.optlastec.2019.105898%22%2C%22ISSN%22%3A%2200303992%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS003039921931148X%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A06Z%22%7D%7D%2C%7B%22key%22%3A%229KU5WW3I%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nelissen%20et%20al.%22%2C%22parsedDate%22%3A%222020-02-20%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BNelissen%2C%20K.%2C%20Liszi%2C%20M.%2C%20Marco%2C%20M.%20D.%2C%20Ospina%2C%20V.%2C%20Drot%26%23xE1%3Br%2C%20I.%2C%20Gatti%2C%20G.%2C%20Kamperidis%2C%20C.%2C%20%26amp%3B%20Volpe%2C%20L.%20%282020%29.%20Characterisation%20and%20Modelling%20of%20Ultrashort%20Laser-Driven%20Electromagnetic%20Pulses.%20%26lt%3Bi%26gt%3BScientific%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B10%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%203108.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-020-59882-8%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-020-59882-8%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Characterisation%20and%20Modelling%20of%20Ultrashort%20Laser-Driven%20Electromagnetic%20Pulses%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kwinten%22%2C%22lastName%22%3A%22Nelissen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%5Cu00e1t%5Cu00e9%22%2C%22lastName%22%3A%22Liszi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Massimo%20De%22%2C%22lastName%22%3A%22Marco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valeria%22%2C%22lastName%22%3A%22Ospina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Istv%5Cu00e1n%22%2C%22lastName%22%3A%22Drot%5Cu00e1r%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giancarlo%22%2C%22lastName%22%3A%22Gatti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christos%22%2C%22lastName%22%3A%22Kamperidis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Volpe%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Recent%20advances%20on%20laser%20technology%20have%20enabled%20the%20generation%20of%20ultrashort%20%28fs%29%20high%20power%20%28PW%29%20laser%20systems.%20For%20such%20large%20scale%20laser%20facilities%20there%20is%20an%20imperative%20demand%20for%20high%20repetition%20rate%20operation%20in%20symbiosis%20with%20beamlines%20or%20end-stations.%20In%20such%20extreme%20conditions%20the%20generation%20of%20electromagnetic%20pulses%20%28EMP%29%20during%20high%20intense%20laser%20target%20interaction%20experiments%20can%20tip%20the%20scale%20for%20the%20good%20outcome%20of%20the%20campaign.%20The%20EMP%20effects%20are%20several%20including%20interference%20with%20diagnostic%20devices%20and%20actuators%20as%20well%20as%20damage%20of%20electrical%20components.%20The%20EMP%20issue%20is%20quite%20known%20in%20the%20picosecond%20%28ps%29%20pulse%20laser%20experiments%20but%20no%20systematic%20study%20on%20EMP%20issues%20at%20multi-Joule%20fs-class%20lasers%20has%20been%20conducted%20thus%20far.%20In%20this%20paper%20we%20report%20the%20first%20experimental%20campaign%20for%20EMP-measurements%20performed%20at%20the%20200%20TW%20laser%20system%20%28VEGA%202%29%20at%20CLPU%20laser%20center.%20EMP%20pulse%20energy%20has%20been%20measured%20as%20a%20function%20of%20the%20laser%20intensity%20and%20energy%20together%20with%20other%20relevant%20quantities%20such%20as%20%28i%29%20the%20charge%20of%20the%20laser-driven%20protons%20and%20their%20maximum%20energy%2C%20as%20well%20as%20%28ii%29%20the%20X-ray%20K%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03b1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20emission%20coming%20from%20electron%20interaction%20inside%20the%20target.%20Analysis%20of%20experimental%20results%20demonstrate%20%28and%20confirm%29%20a%20direct%20correlation%20between%20the%20measured%20EMP%20pulse%20energy%20and%20the%20laser%20parameters%20such%20as%20laser%20intensity%20and%20laser%20energy%20in%20the%20ultrashort%20pulse%20duration%20regime.%20Numerical%20FEM%20%28Finite%20Element%20Method%29%20simulations%20of%20the%20EMP%20generated%20by%20the%20target%20holder%20system%20have%20been%20performed%20and%20the%20simulations%20results%20are%20shown%20to%20be%20in%20good%20agreement%20with%20the%20experimental%20ones.%22%2C%22date%22%3A%222020-02-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-020-59882-8%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-020-59882-8%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A18Z%22%7D%7D%2C%7B%22key%22%3A%22CR6LR9X3%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Pasley%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BPasley%2C%20J.%2C%20Andrianaki%2C%20G.%2C%20Api%26%23xF1%3Baniz%2C%20J.%20I.%2C%20Baroutsos%2C%20A.%2C%20Batani%2C%20D.%2C%20Benis%2C%20E.%20P.%2C%20Ciardi%2C%20A.%2C%20Cook%2C%20D.%2C%20De%20Marco%2C%20M.%2C%20Dimitriou%2C%20V.%2C%20Dromey%2C%20B.%2C%20Fitilis%2C%20I.%2C%20Gatti%2C%20G.%2C%20Grigoriadis%2C%20A.%2C%20Huault%2C%20M.%2C%20P%26%23xE9%3Brez%20Hern%26%23xE1%3Bndez%2C%20J.%20A.%2C%20Kaselouris%2C%20E.%2C%20Klimo%2C%20O.%2C%20Koenig%2C%20M.%2C%20%26%23×2026%3B%20Tatarakis%2C%20M.%20%282020%29.%20Innovative%20education%20and%20training%20in%20high%20power%20laser%20plasmas%20%28PowerLaPs%29%20for%20plasma%20physics%2C%20high%20power%20laser%20matter%20interactions%20and%20high%20energy%20density%20physics%3A%20experimental%20diagnostics%20and%20simulations%20%26%23×2013%3B%20CORRIGENDUM.%20%26lt%3Bi%26gt%3BHigh%20Power%20Laser%20Science%20and%20Engineering%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B8%26lt%3B%5C%2Fi%26gt%3B%2C%20e9.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fhpl.2020.12%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fhpl.2020.12%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Innovative%20education%20and%20training%20in%20high%20power%20laser%20plasmas%20%28PowerLaPs%29%20for%20plasma%20physics%2C%20high%20power%20laser%20matter%20interactions%20and%20high%20energy%20density%20physics%3A%20experimental%20diagnostics%20and%20simulations%20%5Cu2013%20CORRIGENDUM%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%22%2C%22lastName%22%3A%22Pasley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Georgia%22%2C%22lastName%22%3A%22Andrianaki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jon%20Imanol%22%2C%22lastName%22%3A%22Api%5Cu00f1aniz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Baroutsos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dimitri%22%2C%22lastName%22%3A%22Batani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanouil%20P.%22%2C%22lastName%22%3A%22Benis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrea%22%2C%22lastName%22%3A%22Ciardi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Donna%22%2C%22lastName%22%3A%22Cook%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Massimo%22%2C%22lastName%22%3A%22De%20Marco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vasilios%22%2C%22lastName%22%3A%22Dimitriou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brendan%22%2C%22lastName%22%3A%22Dromey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ioannis%22%2C%22lastName%22%3A%22Fitilis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giancarlo%22%2C%22lastName%22%3A%22Gatti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anastasios%22%2C%22lastName%22%3A%22Grigoriadis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marine%22%2C%22lastName%22%3A%22Huault%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jose%20Antonio%22%2C%22lastName%22%3A%22P%5Cu00e9rez%20Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Evaggelos%22%2C%22lastName%22%3A%22Kaselouris%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ondrej%22%2C%22lastName%22%3A%22Klimo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michel%22%2C%22lastName%22%3A%22Koenig%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22George%22%2C%22lastName%22%3A%22Koundourakis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Milan%22%2C%22lastName%22%3A%22Kucharik%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jiri%22%2C%22lastName%22%3A%22Limpouch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Richard%22%2C%22lastName%22%3A%22Liska%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%20Salgado%22%2C%22lastName%22%3A%22Lopez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophia%22%2C%22lastName%22%3A%22Malko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Susana%22%2C%22lastName%22%3A%22Olmos-Miguel%5Cu00e1%5Cu00f1ez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yannis%22%2C%22lastName%22%3A%22Orphanos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valeria%22%2C%22lastName%22%3A%22Ospina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nektarios%20A.%22%2C%22lastName%22%3A%22Papadogiannis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stelios%22%2C%22lastName%22%3A%22Petrakis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan%22%2C%22lastName%22%3A%22Psikal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mauricio%22%2C%22lastName%22%3A%22Rico%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maria%22%2C%22lastName%22%3A%22Serena%20Rivetta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mar%5Cu00eda-Jos%5Cu00e9%22%2C%22lastName%22%3A%22Rodr%5Cu00edguez-Conde%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jo%5Cu00e3o%22%2C%22lastName%22%3A%22Jorge%20Santos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Milan%22%2C%22lastName%22%3A%22Sinor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandros%22%2C%22lastName%22%3A%22Skoulakis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ioannis%22%2C%22lastName%22%3A%22Tazes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%20Tejada%22%2C%22lastName%22%3A%22Pascual%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Touati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Calliope%22%2C%22lastName%22%3A%22Tsitou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pavel%22%2C%22lastName%22%3A%22Vachal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Volpe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jiri%22%2C%22lastName%22%3A%22Vyskocil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Steven%22%2C%22lastName%22%3A%22White%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%22%2C%22lastName%22%3A%22Yeung%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ghassan%22%2C%22lastName%22%3A%22Zeraouli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Tatarakis%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1017%5C%2Fhpl.2020.12%22%2C%22ISSN%22%3A%222095-4719%2C%202052-3289%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.cambridge.org%5C%2Fcore%5C%2Fproduct%5C%2Fidentifier%5C%2FS2095471920000122%5C%2Ftype%5C%2Fjournal_article%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A39Z%22%7D%7D%2C%7B%22key%22%3A%227RW3PVDT%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Prada-Rodrigo%20et%20al.%22%2C%22parsedDate%22%3A%222020-05-10%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BPrada-Rodrigo%2C%20J.%2C%20Rodr%26%23xED%3Bguez-Beltr%26%23xE1%3Bn%2C%20R.%20I.%2C%20Paszkiewicz%2C%20S.%2C%20Szymczyk%2C%20A.%2C%20Ezquerra%2C%20T.%20A.%2C%20Moreno%2C%20P.%2C%20%26amp%3B%20Rebollar%2C%20E.%20%282020%29.%20Laser-Induced%20Periodic%20Surface%20Structuring%20of%20Poly%28trimethylene%20terephthalate%29%20Films%20Containing%20Tungsten%20Disulfide%20Nanotubes.%20%26lt%3Bi%26gt%3BPolymers%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B12%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%201090.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fpolym12051090%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fpolym12051090%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Laser-Induced%20Periodic%20Surface%20Structuring%20of%20Poly%28trimethylene%20terephthalate%29%20Films%20Containing%20Tungsten%20Disulfide%20Nanotubes%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%22%2C%22lastName%22%3A%22Prada-Rodrigo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ren%5Cu00e9%20I.%22%2C%22lastName%22%3A%22Rodr%5Cu00edguez-Beltr%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sandra%22%2C%22lastName%22%3A%22Paszkiewicz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%22%2C%22lastName%22%3A%22Szymczyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tiberio%20A.%22%2C%22lastName%22%3A%22Ezquerra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pablo%22%2C%22lastName%22%3A%22Moreno%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esther%22%2C%22lastName%22%3A%22Rebollar%22%7D%5D%2C%22abstractNote%22%3A%22We%20report%20the%20study%20of%20the%20formation%20of%20Laser%20Induced%20Periodic%20Surface%20Structures%20%28LIPSS%29%2C%20with%20UV%20femtosecond%20laser%20pulses%20%28%5Cu03bb%20%3D%20265%20nm%29%2C%20in%20free-standing%20films%20of%20both%20Poly%28trimethylene%20terephthalate%29%20%28PTT%29%20and%20the%20composite%20PTT%5C%2Ftungsten%20disulfide%20inorganic%20nanotubes%20%28PTT-WS2%29.%20We%20characterized%20the%20range%20of%20fluences%20and%20number%20of%20pulses%20necessary%20to%20induce%20LIPSS%20formation%20and%20measured%20the%20topography%20of%20the%20samples%20by%20Atomic%20Force%20Microscopy%2C%20the%20change%20in%20surface%20energy%20and%20contact%20angle%20using%20the%20sessile%20drop%20technique%2C%20and%20the%20modification%20in%20both%20Young%5Cu2019s%20modulus%20and%20adhesion%20force%20values%20with%20Peak%20Force-Quantitative%20Nanomechanical%20Mapping.%20LIPSS%20appeared%20parallel%20to%20the%20laser%20polarization%20with%20a%20period%20close%20to%20its%20wavelength%20in%20a%20narrow%20fluence%20and%20number%20of%20pulses%20regime%2C%20with%20PTT-WS2%20needing%20slightly%20larger%20fluence%20than%20raw%20PTT%20due%20to%20its%20higher%20crystallinity%20and%20heat%20diffusion.%20Little%20change%20was%20found%20in%20the%20total%20surface%20energy%20of%20the%20samples%2C%20but%20there%20was%20a%20radical%20increase%20in%20the%20negative%20polar%20component%20%28%5Cu03b3%5Cu2212%29.%20Besides%2C%20we%20measured%20small%20variations%20in%20the%20samples%20Young%5Cu2019s%20modulus%20after%20LIPSS%20formation%20whereas%20adhesion%20is%20reduced%20by%20a%20factor%20of%20four.%20This%20reduction%2C%20as%20well%20as%20the%20increase%20in%20%5Cu03b3%5Cu2212%2C%20is%20a%20result%20of%20the%20modification%20of%20the%20surface%20chemistry%2C%20in%20particular%20a%20slight%20oxidation%2C%20during%20irradiation.%22%2C%22date%22%3A%222020-05-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fpolym12051090%22%2C%22ISSN%22%3A%222073-4360%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F2073-4360%5C%2F12%5C%2F5%5C%2F1090%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A43Z%22%7D%7D%2C%7B%22key%22%3A%22GTFLEV5K%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Puttock%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BPuttock%2C%20R.%2C%20Manzin%2C%20A.%2C%20Neu%2C%20V.%2C%20Garcia%26%23×2010%3BSanchez%2C%20F.%2C%20Fernandez%20Scarioni%2C%20A.%2C%20Schumacher%2C%20H.%20W.%2C%20%26amp%3B%20Kazakova%2C%20O.%20%282020%29.%20Modal%20Frustration%20and%20Periodicity%20Breaking%20in%20Artificial%20Spin%20Ice.%20%26lt%3Bi%26gt%3BSmall%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B16%26lt%3B%5C%2Fi%26gt%3B%2842%29%2C%202003141.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsmll.202003141%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsmll.202003141%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Modal%20Frustration%20and%20Periodicity%20Breaking%20in%20Artificial%20Spin%20Ice%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Puttock%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessandra%22%2C%22lastName%22%3A%22Manzin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Volker%22%2C%22lastName%22%3A%22Neu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Garcia%5Cu2010Sanchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Fernandez%20Scarioni%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hans%20W.%22%2C%22lastName%22%3A%22Schumacher%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olga%22%2C%22lastName%22%3A%22Kazakova%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Here%2C%20an%20artificial%20spin%20ice%20lattice%20is%20introduced%20that%20exhibits%20unique%20Ising%20and%20non%5Cu2010Ising%20behavior%20under%20specific%20field%20switching%20protocols%20because%20of%20the%20inclusion%20of%20coupled%20nanomagnets%20into%20the%20unit%20cell.%20In%20the%20Ising%20regime%2C%20a%20magnetic%20switching%20mechanism%20that%20generates%20a%20uni%5Cu2010%20or%20bimodal%20distribution%20of%20states%20dependent%20on%20the%20alignment%20of%20the%20field%20is%20demonstrated%20with%20respect%20to%20the%20lattice%20unit%20cell.%20In%20addition%2C%20a%20method%20for%20generating%20a%20plethora%20of%20randomly%20distributed%20energy%20states%20across%20the%20lattice%2C%20consisting%20of%20Ising%20and%20Landau%20states%2C%20is%20investigated%20through%20magnetic%20force%20microscopy%20and%20micromagnetic%20modeling.%20It%20is%20demonstrated%20that%20the%20dispersed%20energy%20distribution%20across%20the%20lattice%20is%20a%20result%20of%20the%20intrinsic%20design%20and%20can%20be%20finely%20tuned%20through%20control%20of%20the%20incident%20angle%20of%20a%20critical%20field.%20The%20present%20manuscript%20explores%20a%20complex%20frustrated%20environment%20beyond%20the%2016%5Cu2010vertex%20Ising%20model%20for%20the%20development%20of%20novel%20logic%5Cu2010based%20technologies.%22%2C%22date%22%3A%2210%5C%2F2020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fsmll.202003141%22%2C%22ISSN%22%3A%221613-6810%2C%201613-6829%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fsmll.202003141%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A38Z%22%7D%7D%2C%7B%22key%22%3A%229546C7W2%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rajib%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRajib%2C%20M.%20M.%2C%20Misba%2C%20W.%20A.%2C%20Bhattacharya%2C%20D.%2C%20Garcia-Sanchez%2C%20F.%2C%20%26amp%3B%20Atulasimha%2C%20J.%20%282020%29.%20Dynamic%20Skyrmion-Mediated%20Switching%20of%20Perpendicular%20MTJs%3A%20Feasibility%20Analysis%20of%20Scaling%20to%2020%20nm%20With%20Thermal%20Noise.%20%26lt%3Bi%26gt%3BIEEE%20Transactions%20on%20Electron%20Devices%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B67%26lt%3B%5C%2Fi%26gt%3B%289%29%2C%203883%26%23×2013%3B3888.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTED.2020.3011659%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTED.2020.3011659%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Dynamic%20Skyrmion-Mediated%20Switching%20of%20Perpendicular%20MTJs%3A%20Feasibility%20Analysis%20of%20Scaling%20to%2020%20nm%20With%20Thermal%20Noise%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Md%20Mahadi%22%2C%22lastName%22%3A%22Rajib%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Walid%20Al%22%2C%22lastName%22%3A%22Misba%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dhritiman%22%2C%22lastName%22%3A%22Bhattacharya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Garcia-Sanchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jayasimha%22%2C%22lastName%22%3A%22Atulasimha%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%229%5C%2F2020%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FTED.2020.3011659%22%2C%22ISSN%22%3A%220018-9383%2C%201557-9646%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F9165017%5C%2F%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A42Z%22%7D%7D%2C%7B%22key%22%3A%22ASXYYW7Z%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Raposo%20et%20al.%22%2C%22parsedDate%22%3A%222020-02-14%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRaposo%2C%20V.%2C%20Guedas%2C%20R.%2C%20Garc%26%23xED%3Ba-S%26%23xE1%3Bnchez%2C%20F.%2C%20Hern%26%23xE1%3Bndez%2C%20M.%20A.%2C%20Zazo%2C%20M.%2C%20%26amp%3B%20Mart%26%23xED%3Bnez%2C%20E.%20%282020%29.%20Micromagnetic%20Modeling%20of%20All%20Optical%20Switching%20of%20Ferromagnetic%20Thin%20Films%3A%20The%20Role%20of%20Inverse%20Faraday%20Effect%20and%20Magnetic%20Circular%20Dichroism.%20%26lt%3Bi%26gt%3BApplied%20Sciences%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B10%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%201307.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fapp10041307%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fapp10041307%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Micromagnetic%20Modeling%20of%20All%20Optical%20Switching%20of%20Ferromagnetic%20Thin%20Films%3A%20The%20Role%20of%20Inverse%20Faraday%20Effect%20and%20Magnetic%20Circular%20Dichroism%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rodrigo%22%2C%22lastName%22%3A%22Guedas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Garc%5Cu00eda-S%5Cu00e1nchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20Auxiliadora%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marcelino%22%2C%22lastName%22%3A%22Zazo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Mart%5Cu00ednez%22%7D%5D%2C%22abstractNote%22%3A%22There%20is%20a%20lot%20of%20experimental%20evidence%20of%20All%20Optical%20Switching%20%28AOS%29%20by%20applying%20ultrashort%20laser%20pulses%20on%20ferromagnetic%20thin%20films%20with%20perpendicular%20magnetic%20anisotropy.%20However%2C%20the%20physical%20origin%20behind%20these%20processes%20remains%20under%20debate.%20In%20addition%20to%20the%20heating%20caused%20by%20the%20laser%20pulses%2C%20the%20Inverse%20Faraday%20Effect%20%28IFE%29%20and%20Magnetic%20Circular%20Dichroism%20%28MCD%29%20have%20been%20proposed%20as%20the%20most%20probable%20phenomena%20responsible%20for%20the%20observations%20of%20helicity-dependent%20AOS.%20Here%2C%20we%20review%20the%20influence%20of%20both%20phenomena%20by%20means%20of%20realistic%20micromagnetic%20simulations%20based%20on%20the%20Landau%5Cu2013Lifshitz%5Cu2013Bloch%20equation%20coupled%20to%20the%20heat%20transport%20caused%20by%20the%20laser%20heating.%20The%20analysis%20allows%20us%20to%20reveal%20the%20similarities%20and%20differences%20between%20both%20effects.%20While%20both%20mechanisms%20may%20lead%20to%20the%20local%20inversion%20of%20the%20initial%20magnetic%20state%20of%20a%20ferromagnetic%20sample%20submitted%20to%20a%20train%20of%20circularly%20polarized%20laser%20pulses%2C%20the%20Inverse%20Faraday%20Effect%20proves%20to%20be%20more%20efficient%20for%20nucleation%20and%20domain%20wall%20movement%20and%20it%20reproduces%20more%20accurately%20the%20different%20magnetic%20configurations%20that%20the%20experiments%20report%20for%20different%20values%20of%20the%20fluence%20of%20the%20laser%20beam.%22%2C%22date%22%3A%222020-02-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fapp10041307%22%2C%22ISSN%22%3A%222076-3417%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F2076-3417%5C%2F10%5C%2F4%5C%2F1307%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A42Z%22%7D%7D%2C%7B%22key%22%3A%22RL36DRX5%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rego%20et%20al.%22%2C%22parsedDate%22%3A%222020-10-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRego%2C%20L.%2C%20San%20Rom%26%23xE1%3Bn%2C%20J.%2C%20Plaja%2C%20L.%2C%20%26amp%3B%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%20%282020%29.%20Trains%20of%20attosecond%20pulses%20structured%20with%20time-ordered%20polarization%20states.%20%26lt%3Bi%26gt%3BOptics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B45%26lt%3B%5C%2Fi%26gt%3B%2820%29%2C%205636.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.404402%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.404402%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Trains%20of%20attosecond%20pulses%20structured%20with%20time-ordered%20polarization%20states%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%22%2C%22lastName%22%3A%22Rego%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%22%2C%22lastName%22%3A%22San%20Rom%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%5D%2C%22abstractNote%22%3A%22Ultrafast%20laser%20pulses%20generated%20at%20the%20attosecond%20timescale%20represent%20a%20unique%20tool%20to%20explore%20the%20fastest%20dynamics%20in%20matter.%20An%20accurate%20control%20of%20their%20properties%2C%20such%20as%20polarization%2C%20is%20fundamental%20to%20shape%20three-dimensional%20laser-driven%20dynamics.%20We%20introduce%20a%20technique%20to%20generate%20attosecond%20pulse%20trains%20whose%20polarization%20state%20varies%20from%20pulse%20to%20pulse.%20This%20is%20accomplished%20by%20driving%20high-harmonic%20generation%20with%20two%20time-delayed%20bichromatic%20counter-rotating%20fields%20with%20proper%20orbital%20angular%20momentum%20%28OAM%29%20content.%20Our%20simulations%20show%20that%20the%20evolution%20of%20the%20polarization%20state%20along%20the%20train%20can%20be%20controlled%20via%20OAM%2C%20pulse%20duration%2C%20and%20time%20delay%20of%20the%20driving%20fields.%20We%2C%20thus%2C%20introduce%20an%20additional%20control%20into%20structured%20attosecond%20pulses%20that%20provides%20an%20alternative%20route%20to%20explore%20ultrafast%20dynamics%20with%20potential%20applications%20in%20chiral%20and%20magnetic%20materials.%22%2C%22date%22%3A%222020-10-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOL.404402%22%2C%22ISSN%22%3A%220146-9592%2C%201539-4794%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dol-45-20-5636%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A06Z%22%7D%7D%2C%7B%22key%22%3A%2258DMJ4NF%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rego%20et%20al.%22%2C%22parsedDate%22%3A%222020-04-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRego%2C%20L.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20Pic%26%23xF3%3Bn%2C%20A.%2C%20%26amp%3B%20Plaja%2C%20L.%20%282020%29.%20Site-specific%20tunnel-ionization%20in%20high%20harmonic%20generation%20in%20molecules.%20%26lt%3Bi%26gt%3BNew%20Journal%20of%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B22%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20043012.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1367-2630%5C%2Fab7dde%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1367-2630%5C%2Fab7dde%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Site-specific%20tunnel-ionization%20in%20high%20harmonic%20generation%20in%20molecules%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%22%2C%22lastName%22%3A%22Rego%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Pic%5Cu00f3n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20We%20demonstrate%20that%20the%20standard%20picture%20of%20strong-field%20tunnel-ionization%20from%20molecules%20should%20be%20reformulated.%20The%20extended%20nature%20of%20the%20molecular%20potential%20implies%20the%20separation%20of%20some%20of%20the%20molecular%20sites%20from%20the%20edge%20of%20the%20ionization%20barrier.%20We%20show%20that%20the%20dependence%20of%20the%20tunnel%20probability%20with%20the%20distance%20to%20the%20barrier%20is%20translated%20into%20the%20ionized%20wavepacket%2C%20modifying%20substantially%20the%20high-order%20harmonic%20emission.%20The%20introduction%20of%20the%20dependence%20of%20tunnel%20ionization%20with%20the%20molecular%20site%20significantly%20improves%20the%20theoretical%20description%20of%20high-order%20harmonic%20generation%20in%20molecules%2C%20which%20is%20used%20as%20a%20cornerstone%20in%20high-harmonic%20spectroscopy%20and%20attosecond%20imaging.%22%2C%22date%22%3A%222020-04-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1367-2630%5C%2Fab7dde%22%2C%22ISSN%22%3A%221367-2630%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1367-2630%5C%2Fab7dde%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22TS9263QC%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rodriguez-Losada%20et%20al.%22%2C%22parsedDate%22%3A%222020-12-21%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRodriguez-Losada%2C%20N.%2C%20Wendelbob%2C%20R.%2C%20Oca%26%23xF1%3Ba%2C%20M.%20C.%2C%20Casares%2C%20A.%20D.%2C%20Guzman%20De%20Villor%26%23xED%3Ba%2C%20R.%2C%20Aguirre%20Gomez%2C%20J.%20A.%2C%20Arraez%2C%20M.%20A.%2C%20Gonzalez-Alegre%2C%20P.%2C%20Medina%2C%20M.%20A.%2C%20Arenas%2C%20E.%2C%20%26amp%3B%20Narvaez%2C%20J.%20A.%20%282020%29.%20Graphene%20Oxide%20and%20Reduced%20Derivatives%2C%20as%20Powder%20or%20Film%20Scaffolds%2C%20Differentially%20Promote%20Dopaminergic%20Neuron%20Differentiation%20and%20Survival.%20%26lt%3Bi%26gt%3BFrontiers%20in%20Neuroscience%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B14%26lt%3B%5C%2Fi%26gt%3B%2C%20570409.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffnins.2020.570409%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffnins.2020.570409%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Graphene%20Oxide%20and%20Reduced%20Derivatives%2C%20as%20Powder%20or%20Film%20Scaffolds%2C%20Differentially%20Promote%20Dopaminergic%20Neuron%20Differentiation%20and%20Survival%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Noela%22%2C%22lastName%22%3A%22Rodriguez-Losada%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rune%22%2C%22lastName%22%3A%22Wendelbob%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20Carmen%22%2C%22lastName%22%3A%22Oca%5Cu00f1a%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amelia%20Diaz%22%2C%22lastName%22%3A%22Casares%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberto%22%2C%22lastName%22%3A%22Guzman%20De%20Villor%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jose%20A.%22%2C%22lastName%22%3A%22Aguirre%20Gomez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Miguel%20A.%22%2C%22lastName%22%3A%22Arraez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pedro%22%2C%22lastName%22%3A%22Gonzalez-Alegre%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Miguel%20A.%22%2C%22lastName%22%3A%22Medina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ernest%22%2C%22lastName%22%3A%22Arenas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jose%20A.%22%2C%22lastName%22%3A%22Narvaez%22%7D%5D%2C%22abstractNote%22%3A%22Emerging%20scaffold%20structures%20made%20of%20carbon%20nanomaterials%2C%20such%20as%20graphene%20oxide%20%28GO%29%20have%20shown%20efficient%20bioconjugation%20with%20common%20biomolecules.%20Previous%20studies%20described%20that%20GO%20promotes%20the%20differentiation%20of%20neural%20stem%20cells%20and%20may%20be%20useful%20for%20neural%20regeneration.%20In%20this%20study%2C%20we%20examined%20the%20capacity%20of%20GO%2C%20full%20reduced%20%28FRGO%29%2C%20and%20partially%20reduced%20%28PRGO%29%20powder%20and%20film%20to%20support%20survival%2C%20proliferation%2C%20differentiation%2C%20maturation%2C%20and%20bioenergetic%20function%20of%20a%20dopaminergic%20%28DA%29%20cell%20line%20derived%20from%20the%20mouse%20substantia%20nigra%20%28SN4741%29.%20Our%20results%20show%20that%20the%20morphology%20of%20the%20film%20and%20the%20species%20of%20graphene%20%28GO%2C%20PRGO%2C%20or%20FRGO%29%20influences%20the%20behavior%20and%20function%20of%20these%20neurons.%20In%20general%2C%20we%20found%20better%20biocompatibility%20of%20the%20film%20species%20than%20that%20of%20the%20powder.%20Analysis%20of%20cell%20viability%20and%20cytotoxicity%20showed%20good%20cell%20survival%2C%20a%20lack%20of%20cell%20death%20in%20all%20GO%20forms%20and%20its%20derivatives%2C%20a%20decreased%20proliferation%2C%20and%20increased%20differentiation%20over%20time.%20Neuronal%20maturation%20of%20SN4741%20in%20all%20GO%20forms%2C%20and%20its%20derivatives%20were%20assessed%20by%20increased%20protein%20levels%20of%20tyrosine%20hydroxylase%20%28TH%29%2C%20dopamine%20transporter%20%28DAT%29%2C%20the%20glutamate%20inward%20rectifying%20potassium%20channel%202%20%28GIRK2%29%2C%20and%20of%20synaptic%20proteins%2C%20such%20as%20synaptobrevin%20and%20synaptophysin.%20Notably%2C%20PRGO-film%20increased%20the%20levels%20of%20Tuj1%20and%20the%20expression%20of%20transcription%20factors%20specific%20for%20midbrain%20DA%20neurons%2C%20such%20as%20Pitx3%2C%20Lmx1a%2C%20and%20Lmx1b.%20Bioenergetics%20and%20mitochondrial%20dysfunction%20were%20evaluated%20by%20measuring%20oxygen%20consumption%20modified%20by%20distinct%20GO%20species%20and%20were%20different%20between%20powder%20and%20film%20for%20the%20same%20GO%20species.%20Our%20results%20indicate%20that%20PRGO-film%20was%20the%20best%20GO%20species%20at%20maintaining%20mitochondrial%20function%20compared%20to%20control.%20Finally%2C%20different%20GO%20forms%2C%20and%20particularly%20PRGO-film%20was%20also%20found%20to%20prevent%20the%20loss%20of%20DA%20cells%20and%20the%20decrease%20of%20the%20%5Cu03b1-synuclein%20%28%5Cu03b1-syn%29%20in%20a%20molecular%20environment%20where%20oxidative%20stress%20has%20been%20induced%20to%20model%20Parkinson%26%23039%3Bs%20disease.%20In%20conclusion%2C%20PRGO-film%20is%20the%20most%20efficient%20graphene%20species%20at%20promoting%20DA%20differentiation%20and%20preventing%20DA%20cell%20loss%2C%20thus%20becoming%20a%20suitable%20scaffold%20to%20test%20new%20drugs%20or%20develop%20constructs%20for%20Parkinson%26%23039%3Bs%20disease%20cell%20replacement%20therapy.%22%2C%22date%22%3A%222020-12-21%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffnins.2020.570409%22%2C%22ISSN%22%3A%221662-453X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffnins.2020.570409%5C%2Ffull%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A03Z%22%7D%7D%2C%7B%22key%22%3A%22MV3UWSII%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rueda%20et%20al.%22%2C%22parsedDate%22%3A%222020-03-28%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRueda%2C%20P.%2C%20Videla%2C%20F.%2C%20Neyra%2C%20E.%2C%20P%26%23xE9%3Brez-Hern%26%23xE1%3Bndez%2C%20J.%20A.%2C%20Ciappina%2C%20M.%20F.%2C%20%26amp%3B%20Torchia%2C%20G.%20A.%20%282020%29.%20Above-threshold%20ionization%20driven%20by%20few-cycle%20spatially%20bounded%20inhomogeneous%20laser%20fields.%20%26lt%3Bi%26gt%3BJournal%20of%20Physics%20B%3A%20Atomic%2C%20Molecular%20and%20Optical%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B53%26lt%3B%5C%2Fi%26gt%3B%286%29%2C%20065403.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6455%5C%2Fab63ab%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6455%5C%2Fab63ab%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Above-threshold%20ionization%20driven%20by%20few-cycle%20spatially%20bounded%20inhomogeneous%20laser%20fields%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Rueda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F%22%2C%22lastName%22%3A%22Videla%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E%22%2C%22lastName%22%3A%22Neyra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%20A%22%2C%22lastName%22%3A%22P%5Cu00e9rez-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%20F%22%2C%22lastName%22%3A%22Ciappina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G%20A%22%2C%22lastName%22%3A%22Torchia%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-03-28%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6455%5C%2Fab63ab%22%2C%22ISSN%22%3A%220953-4075%2C%201361-6455%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6455%5C%2Fab63ab%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A06Z%22%7D%7D%2C%7B%22key%22%3A%22EU74VAIT%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ruiz-G%5Cu00f3mez%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRuiz-G%26%23xF3%3Bmez%2C%20S.%2C%20Fern%26%23xE1%3Bndez-Gonz%26%23xE1%3Blez%2C%20C.%2C%20Mart%26%23xED%3Bnez%2C%20E.%2C%20Raposo%2C%20V.%2C%20Sorrentino%2C%20A.%2C%20Foerster%2C%20M.%2C%20Aballe%2C%20L.%2C%20Mascaraque%2C%20A.%2C%20Ferrer%2C%20S.%2C%20%26amp%3B%20P%26%23xE9%3Brez%2C%20L.%20%282020%29.%20Helical%20surface%20magnetization%20in%20nanowires%3A%20the%20role%20of%20chirality.%20%26lt%3Bi%26gt%3BNanoscale%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B12%26lt%3B%5C%2Fi%26gt%3B%2834%29%2C%2017880%26%23×2013%3B17885.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD0NR05424K%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD0NR05424K%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Helical%20surface%20magnetization%20in%20nanowires%3A%20the%20role%20of%20chirality%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sandra%22%2C%22lastName%22%3A%22Ruiz-G%5Cu00f3mez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Fern%5Cu00e1ndez-Gonz%5Cu00e1lez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Mart%5Cu00ednez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrea%22%2C%22lastName%22%3A%22Sorrentino%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Foerster%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luc%5Cu00eda%22%2C%22lastName%22%3A%22Aballe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arantzazu%22%2C%22lastName%22%3A%22Mascaraque%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Salvador%22%2C%22lastName%22%3A%22Ferrer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucas%22%2C%22lastName%22%3A%22P%5Cu00e9rez%22%7D%5D%2C%22abstractNote%22%3A%22Nanomagnetism%20is%20nowadays%20expanding%20into%20three%20dimensions%2C%20triggered%20by%20the%20discovery%20of%20new%20magnetic%20spin%20textures%20that%20should%20be%20studied%20and%20understood.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Nanomagnetism%20is%20nowadays%20expanding%20into%20three%20dimensions%2C%20triggered%20by%20the%20discovery%20of%20new%20magnetic%20phenomena%20and%20their%20potential%20use%20in%20applications.%20This%20shift%20towards%203D%20structures%20should%20be%20accompanied%20by%20strategies%20and%20methodologies%20to%20map%20the%20tridimensional%20spin%20textures%20associated.%20We%20present%20here%20a%20combination%20of%20dichroic%20X-ray%20transmission%20microscopy%20at%20different%20angles%20and%20micromagnetic%20simulations%20allowing%20to%20determine%20the%20magnetic%20configuration%20of%20cylindrical%20nanowires.%20We%20have%20applied%20it%20to%20permalloy%20nanowires%20with%20equispaced%20chemical%20barriers%20that%20can%20act%20as%20pinning%20sites%20for%20domain%20walls.%20The%20magnetization%20at%20the%20core%20is%20longitudinal%20and%20generates%20at%20the%20surface%20of%20the%20wire%20helical%20magnetization.%20Different%20types%20of%20domain%20walls%20are%20found%20at%20the%20pinning%20sites%2C%20which%20respond%20differently%20to%20applied%20fields%20depending%20on%20the%20relative%20chirality%20of%20the%20adjacent%20domains.%22%2C%22date%22%3A%222020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD0NR05424K%22%2C%22ISSN%22%3A%222040-3364%2C%202040-3372%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DD0NR05424K%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A38Z%22%7D%7D%2C%7B%22key%22%3A%22E3VYAD2U%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Salgado-Remacha%20et%20al.%22%2C%22parsedDate%22%3A%222020-07-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSalgado-Remacha%2C%20F.%20J.%2C%20Alonso%2C%20B.%2C%20Crespo%2C%20H.%2C%20Cojocaru%2C%20C.%2C%20Trull%2C%20J.%2C%20Romero%2C%20R.%2C%20L%26%23xF3%3Bpez-Ripa%2C%20M.%2C%20Guerreiro%2C%20P.%20T.%2C%20Silva%2C%20F.%2C%20Miranda%2C%20M.%2C%20L%26%23×2019%3BHuillier%2C%20A.%2C%20Arnold%2C%20C.%20L.%2C%20%26amp%3B%20Sola%2C%20%26%23xCD%3B.%20J.%20%282020%29.%20Single-shot%20d-scan%20technique%20for%20ultrashort%20laser%20pulse%20characterization%20using%20transverse%20second-harmonic%20generation%20in%20random%20nonlinear%20crystals.%20%26lt%3Bi%26gt%3BOptics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B45%26lt%3B%5C%2Fi%26gt%3B%2814%29%2C%203925.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.397033%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.397033%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Single-shot%20d-scan%20technique%20for%20ultrashort%20laser%20pulse%20characterization%20using%20transverse%20second-harmonic%20generation%20in%20random%20nonlinear%20crystals%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20J.%22%2C%22lastName%22%3A%22Salgado-Remacha%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Alonso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Crespo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Cojocaru%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Trull%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22L%5Cu00f3pez-Ripa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20T.%22%2C%22lastName%22%3A%22Guerreiro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Silva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Miranda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22L%5Cu2019Huillier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20L.%22%2C%22lastName%22%3A%22Arnold%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd.%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%5D%2C%22abstractNote%22%3A%22We%20demonstrate%20a%20novel%20dispersion-scan%20%28d-scan%29%20scheme%20for%20single-shot%5Cn%5Ct%5Ct%5Ct%5Ct%5Cttemporal%20characterization%20of%20ultrashort%20laser%20pulses.%20The%20novelty%20of%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctthis%20method%20relies%20on%20the%20use%20of%20a%20highly%20dispersive%20crystal%20featuring%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctantiparallel%20nonlinear%20domains%20with%20a%20random%20distribution%20and%20size.%5Cn%5Ct%5Ct%5Ct%5Ct%5CtThis%20crystal%2C%20capable%20of%20generating%20a%20transverse%20second-harmonic%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctsignal%2C%20acts%20simultaneously%20as%20the%20dispersive%20element%20and%20the%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctnonlinear%20medium%20of%20the%20d-scan%20device.%20The%20resulting%20in-line%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctarchitecture%20makes%20the%20technique%20very%20simple%20and%20robust%2C%20allowing%20the%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctacquisition%20of%20single-shot%20d-scan%20traces%20in%20real%20time.%20The%20retrieved%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctpulses%20are%20in%20very%20good%20agreement%20with%20independent%20frequency-resolved%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctoptical%20grating%20measurements.%20We%20also%20apply%20the%20new%20single-shot%20d-scan%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctto%20a%20terawatt-class%20laser%20equipped%20with%20a%20programmable%20pulse%20shaper%2C%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctobtaining%20an%20excellent%20agreement%20between%20the%20applied%20and%20the%20d-scan%5Cn%5Ct%5Ct%5Ct%5Ct%5Ctretrieved%20dispersions.%22%2C%22date%22%3A%222020-07-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOL.397033%22%2C%22ISSN%22%3A%220146-9592%2C%201539-4794%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dol-45-14-3925%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A50Z%22%7D%7D%2C%7B%22key%22%3A%22JIZU7D9B%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sanz-Garcia%20et%20al.%22%2C%22parsedDate%22%3A%222020-10-13%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSanz-Garcia%2C%20A.%2C%20Sodupe-Ortega%2C%20E.%2C%20Pern%26%23xED%3Ba-Espinoza%2C%20A.%2C%20Shimizu%2C%20T.%2C%20%26amp%3B%20Escobedo-Lucea%2C%20C.%20%282020%29.%20A%20Versatile%20Open-Source%20Printhead%20for%20Low-Cost%203D%20Microextrusion-Based%20Bioprinting.%20%26lt%3Bi%26gt%3BPolymers%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B12%26lt%3B%5C%2Fi%26gt%3B%2810%29%2C%202346.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fpolym12102346%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fpolym12102346%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Versatile%20Open-Source%20Printhead%20for%20Low-Cost%203D%20Microextrusion-Based%20Bioprinting%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andres%22%2C%22lastName%22%3A%22Sanz-Garcia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Enrique%22%2C%22lastName%22%3A%22Sodupe-Ortega%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alpha%22%2C%22lastName%22%3A%22Pern%5Cu00eda-Espinoza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tatsuya%22%2C%22lastName%22%3A%22Shimizu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carmen%22%2C%22lastName%22%3A%22Escobedo-Lucea%22%7D%5D%2C%22abstractNote%22%3A%22Three-dimensional%20%283D%29%20bioprinting%20promises%20to%20be%20essential%20in%20tissue%20engineering%20for%20solving%20the%20rising%20demand%20for%20organs%20and%20tissues.%20Some%20bioprinters%20are%20commercially%20available%2C%20but%20their%20impact%20on%20the%20field%20of%20Tissue%20engineering%20%28TE%29%20is%20still%20limited%20due%20to%20their%20cost%20or%20difficulty%20to%20tune.%20Herein%2C%20we%20present%20a%20low-cost%20easy-to-build%20printhead%20for%20microextrusion-based%20bioprinting%20%28MEBB%29%20that%20can%20be%20installed%20in%20many%20desktop%203D%20printers%20to%20transform%20them%20into%203D%20bioprinters.%20We%20can%20extrude%20bioinks%20with%20precise%20control%20of%20print%20temperature%20between%202%5Cu201360%20%5Cu00b0C.%20We%20validated%20the%20versatility%20of%20the%20printhead%2C%20by%20assembling%20it%20in%20three%20low-cost%20open-source%20desktop%203D%20printers.%20Multiple%20units%20of%20the%20printhead%20can%20also%20be%20easily%20put%20together%20in%20a%20single%20printer%20carriage%20for%20building%20a%20multi-material%203D%20bioprinter.%20Print%20resolution%20was%20evaluated%20by%20creating%20representative%20calibration%20models%20at%20different%20temperatures%20using%20natural%20hydrogels%20such%20as%20gelatin%20and%20alginate%2C%20and%20synthetic%20ones%20like%20poloxamer.%20Using%20one%20of%20the%20three%20modified%20low-cost%203D%20printers%2C%20we%20successfully%20printed%20cell-laden%20lattice%20constructs%20with%20cell%20viabilities%20higher%20than%2090%25%20after%2024-h%20post%20printing.%20Controlling%20temperature%20and%20pressure%20according%20to%20the%20rheological%20properties%20of%20the%20bioinks%20was%20essential%20in%20achieving%20optimal%20printability%20and%20great%20cell%20viability.%20The%20cost%20per%20unit%20of%20our%20device%2C%20which%20can%20be%20used%20with%20syringes%20of%20different%20volume%2C%20is%20less%20expensive%20than%20any%20other%20commercially%20available%20product.%20These%20data%20demonstrate%20an%20affordable%20open-source%20printhead%20with%20the%20potential%20to%20become%20a%20reliable%20alternative%20to%20commercial%20bioprinters%20for%20any%20laboratory.%22%2C%22date%22%3A%222020-10-13%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fpolym12102346%22%2C%22ISSN%22%3A%222073-4360%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F2073-4360%5C%2F12%5C%2F10%5C%2F2346%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A49Z%22%7D%7D%2C%7B%22key%22%3A%22HT282EJ9%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Shi%20et%20al.%22%2C%22parsedDate%22%3A%222020-09-28%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BShi%2C%20X.%2C%20Liao%2C%20C.-T.%2C%20Tao%2C%20Z.%2C%20Cating-Subramanian%2C%20E.%2C%20Murnane%2C%20M.%20M.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20%26amp%3B%20Kapteyn%2C%20H.%20C.%20%282020%29.%20Attosecond%20light%20science%20and%20its%20application%20for%20probing%20quantum%20materials.%20%26lt%3Bi%26gt%3BJournal%20of%20Physics%20B%3A%20Atomic%2C%20Molecular%20and%20Optical%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B53%26lt%3B%5C%2Fi%26gt%3B%2818%29%2C%20184008.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6455%5C%2Faba2fb%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6455%5C%2Faba2fb%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Attosecond%20light%20science%20and%20its%20application%20for%20probing%20quantum%20materials%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xun%22%2C%22lastName%22%3A%22Shi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chen-Ting%22%2C%22lastName%22%3A%22Liao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhensheng%22%2C%22lastName%22%3A%22Tao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emma%22%2C%22lastName%22%3A%22Cating-Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20M%22%2C%22lastName%22%3A%22Murnane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henry%20C%22%2C%22lastName%22%3A%22Kapteyn%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-09-28%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6455%5C%2Faba2fb%22%2C%22ISSN%22%3A%220953-4075%2C%201361-6455%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6455%5C%2Faba2fb%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A44Z%22%7D%7D%2C%7B%22key%22%3A%22AHN9KUYX%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sola%20and%20Alonso%22%2C%22parsedDate%22%3A%222020-10-27%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSola%2C%20%26%23xCD%3B.%20J.%2C%20%26amp%3B%20Alonso%2C%20B.%20%282020%29.%20Robustness%20and%20capabilities%20of%20ultrashort%20laser%20pulses%20characterization%20with%20amplitude%20swing.%20%26lt%3Bi%26gt%3BScientific%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B10%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%2018364.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-020-75220-4%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-020-75220-4%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Robustness%20and%20capabilities%20of%20ultrashort%20laser%20pulses%20characterization%20with%20amplitude%20swing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjam%5Cu00edn%22%2C%22lastName%22%3A%22Alonso%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20In%20this%20work%20we%20firstly%20study%20the%20influence%20of%20different%20parameters%20in%20the%20temporal%20characterization%20of%20ultrashort%20laser%20pulses%20with%20the%20recently%20developed%20amplitude%20swing%20technique.%20In%20this%20technique%2C%20the%20relative%20amplitude%20of%20two%20delayed%20replicas%20is%20varied%20while%20measuring%20their%20second-harmonic%20spectra.%20Here%20we%20study%20the%20retrieval%20of%20noisy%20traces%20and%20the%20implications%20of%20having%20different%20delays%20or%20phase%20retardations%20%28relative%20phases%29%20between%20the%20two%20replicas.%20Then%2C%20we%20study%20the%20capability%20of%20the%20technique%20to%20characterize%20the%20pulses%20when%20the%20second-harmonic%20signal%20is%20spectrally%20uncalibrated%20or%20incomplete%2C%20presenting%20the%20analytical%20calculation%20of%20the%20marginal%2C%20which%20is%20used%20to%20calibrate%20the%20traces%20and%20to%20perform%20the%20pulse%20retrievals.%20We%20experimentally%20show%20the%20retrieval%20of%20different%20pulses%20using%20diverse%20delays%20and%20phase%20retardations%20to%20perform%20the%20amplitude%20swing%20trace%20and%20demonstrate%20that%2C%20from%20an%20uncalibrated%20trace%2C%20both%20the%20pulse%20information%20and%20the%20response%20of%20the%20nonlinear%20process%20can%20be%20simultaneously%20retrieved.%20In%20sum%2C%20the%20amplitude%20swing%20technique%20is%20shown%20to%20be%20very%20robust%20against%20experimental%20constraints%20and%20limitations%2C%20showing%20a%20high%20degree%20of%20soundness.%22%2C%22date%22%3A%222020-10-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-020-75220-4%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-020-75220-4%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A46Z%22%7D%7D%2C%7B%22key%22%3A%22DDIYH5S7%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sola%20et%20al.%22%2C%22parsedDate%22%3A%222020-12-11%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSola%2C%20D.%2C%20Aldana%2C%20J.%20R.%20V.%20D.%2C%20%26amp%3B%20Artal%2C%20P.%20%282020%29.%20The%20Role%20of%20Thermal%20Accumulation%20on%20the%20Fabrication%20of%20Diffraction%20Gratings%20in%20Ophthalmic%20PHEMA%20by%20Ultrashort%20Laser%20Direct%20Writing.%20%26lt%3Bi%26gt%3BPolymers%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B12%26lt%3B%5C%2Fi%26gt%3B%2812%29%2C%202965.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fpolym12122965%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fpolym12122965%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20Role%20of%20Thermal%20Accumulation%20on%20the%20Fabrication%20of%20Diffraction%20Gratings%20in%20Ophthalmic%20PHEMA%20by%20Ultrashort%20Laser%20Direct%20Writing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Sola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%20V%5Cu00e1zquez%20De%22%2C%22lastName%22%3A%22Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pablo%22%2C%22lastName%22%3A%22Artal%22%7D%5D%2C%22abstractNote%22%3A%22The%20fabrication%20of%20diffraction%20gratings%20by%20ultrashort%20direct%20laser%20writing%20in%20poly-hydroxyethyl-methacrylate%20%28PHEMA%29%20polymers%20used%20as%20soft%20contact%20lenses%20is%20reported.%20Diffraction%20gratings%20were%20inscribed%20by%20focusing%20laser%20radiation%20100%20%5Cu00b5m%20underneath%20the%20surface%20of%20the%20samples.%20Low-%20and%20high-repetition%20rate%20Ti%3Asapphire%20lasers%20with%20120%20fs%20pulsewidth%20working%20at%201%20kHz%20and%2080%20MHz%20respectively%20were%20used%20to%20assess%20the%20role%20of%20thermal%20accumulation%20on%20microstructural%20and%20optical%20characteristics.%20Periodic%20patterns%20were%20produced%20for%20different%20values%20of%20repetition%20rate%2C%20pulse%20energy%2C%20laser%20wavelength%2C%20distance%20between%20tracks%2C%20and%20scanning%20speed.%20Compositional%20and%20structural%20modifications%20of%20the%20processed%20areas%20were%20studied%20by%20micro-Raman%20spectroscopy%20showing%20that%20under%20certain%20parameters%2C%20thermal%20accumulation%20may%20result%20in%20local%20densification.%20Far-field%20diffraction%20patterns%20were%20recorded%20for%20the%20produced%20gratings%20to%20assess%20the%20refractive%20index%20change%20induced%20in%20the%20processed%20areas.%22%2C%22date%22%3A%222020-12-11%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fpolym12122965%22%2C%22ISSN%22%3A%222073-4360%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F2073-4360%5C%2F12%5C%2F12%5C%2F2965%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A09Z%22%7D%7D%2C%7B%22key%22%3A%22CANAW7ZX%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sun%20et%20al.%22%2C%22parsedDate%22%3A%222020-04-24%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSun%2C%20J.%2C%20Passacantando%2C%20M.%2C%20Palummo%2C%20M.%2C%20Nardone%2C%20M.%2C%20Kaasbjerg%2C%20K.%2C%20Grillo%2C%20A.%2C%20Di%20Bartolomeo%2C%20A.%2C%20Caridad%2C%20J.%20M.%2C%20%26amp%3B%20Camilli%2C%20L.%20%282020%29.%20Impact%20of%20Impurities%20on%20the%20Electrical%20Conduction%20of%20Anisotropic%20Two-Dimensional%20Materials.%20%26lt%3Bi%26gt%3BPhysical%20Review%20Applied%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B13%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20044063.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.13.044063%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.13.044063%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Impact%20of%20Impurities%20on%20the%20Electrical%20Conduction%20of%20Anisotropic%20Two-Dimensional%20Materials%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jianbo%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maurizio%22%2C%22lastName%22%3A%22Passacantando%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maurizia%22%2C%22lastName%22%3A%22Palummo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michele%22%2C%22lastName%22%3A%22Nardone%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kristen%22%2C%22lastName%22%3A%22Kaasbjerg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessandro%22%2C%22lastName%22%3A%22Grillo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Di%20Bartolomeo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M.%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Camilli%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-4-24%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.13.044063%22%2C%22ISSN%22%3A%222331-7019%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevApplied.13.044063%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A42Z%22%7D%7D%2C%7B%22key%22%3A%22XEZISYMF%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sun%20et%20al.%22%2C%22parsedDate%22%3A%222020-11-16%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSun%2C%20J.%2C%20Camilli%2C%20L.%2C%20Caridad%2C%20J.%20M.%2C%20Santos%2C%20J.%20E.%2C%20%26amp%3B%20Liu%2C%20Y.%20%282020%29.%20Spontaneous%20adsorption%20of%20ions%20on%20graphene%20at%20the%20electrolyte%26%23×2013%3Bgraphene%20interface.%20%26lt%3Bi%26gt%3BApplied%20Physics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B117%26lt%3B%5C%2Fi%26gt%3B%2820%29%2C%20203102.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0023191%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0023191%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spontaneous%20adsorption%20of%20ions%20on%20graphene%20at%20the%20electrolyte%5Cu2013graphene%20interface%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jianbo%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Camilli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M.%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jaime%20E.%22%2C%22lastName%22%3A%22Santos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuxin%22%2C%22lastName%22%3A%22Liu%22%7D%5D%2C%22abstractNote%22%3A%22We%20report%20the%20spontaneous%20adsorption%20of%20ions%20on%20graphene%20at%20the%20interface%20with%20electrolytes%20through%20an%20investigation%20based%20on%20the%20electrolyte-gated%20field%20effect%20transistor%20configuration.%20It%20is%20found%20that%20the%20gate%20voltage%20at%20which%20the%20minimum%20conductivity%20occurs%20in%20these%20devices%20is%20highly%20sensitive%20to%20the%20type%20of%20ions%20and%20their%20concentrations%20in%20the%20electrolytes%3B%20yet%20the%20experimental%20results%20exhibit%20non-trivial%20deviations%20from%20the%20predictions%20based%20on%20the%20Gouy%5Cu2013Chapman%5Cu2013Stern%20%28GCS%29%20model%2C%20which%20only%20takes%20account%20of%20the%20electrostatic%20interactions%20among%20the%20charges%20in%20the%20system.%20By%20incorporating%20a%20Langmuir-type%20adsorption%20term%20into%20the%20GCS%20model%2C%20we%20achieve%20quantitative%20alignment%20with%20the%20experiments%2C%20thus%20demonstrating%20that%20these%20deviations%20originate%20from%20the%20spontaneous%20adsorption%20of%20ions%20onto%20graphene.%20Analysis%20of%20the%20transport%20characteristics%20in%20these%20devices%20indeed%20confirms%20the%20existence%20of%20the%20adsorbed%20ions.%22%2C%22date%22%3A%222020-11-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0023191%22%2C%22ISSN%22%3A%220003-6951%2C%201077-3118%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fapl%5C%2Farticle%5C%2F117%5C%2F20%5C%2F203102%5C%2F38905%5C%2FSpontaneous-adsorption-of-ions-on-graphene-at-the%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A17Z%22%7D%7D%2C%7B%22key%22%3A%22LKJKSG9V%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Urraca%20et%20al.%22%2C%22parsedDate%22%3A%222020%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BUrraca%2C%20R.%2C%20Sanz-Garcia%2C%20A.%2C%20%26amp%3B%20Sanz-Garcia%2C%20I.%20%282020%29.%20BQC%3A%20A%20free%20web%20service%20to%20quality%20control%20solar%20irradiance%20measurements%20across%20Europe.%20%26lt%3Bi%26gt%3BSolar%20Energy%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B211%26lt%3B%5C%2Fi%26gt%3B%2C%201%26%23×2013%3B10.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.solener.2020.09.055%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.solener.2020.09.055%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22BQC%3A%20A%20free%20web%20service%20to%20quality%20control%20solar%20irradiance%20measurements%20across%20Europe%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ruben%22%2C%22lastName%22%3A%22Urraca%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andres%22%2C%22lastName%22%3A%22Sanz-Garcia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I%5Cu00f1igo%22%2C%22lastName%22%3A%22Sanz-Garcia%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2211%5C%2F2020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.solener.2020.09.055%22%2C%22ISSN%22%3A%220038092X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0038092X20310082%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A21Z%22%7D%7D%2C%7B%22key%22%3A%2258MPMC45%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22V%5Cu00e1zquez%20De%20Aldana%20et%20al.%22%2C%22parsedDate%22%3A%222020-10-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BV%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Romero%2C%20C.%2C%20Fernandez%2C%20J.%2C%20Gorni%2C%20G.%2C%20Pascual%2C%20M.%20J.%2C%20Duran%2C%20A.%2C%20%26amp%3B%20Balda%2C%20R.%20%282020%29.%20Femtosecond%20laser%20direct%20inscription%20of%203D%20photonic%20devices%20in%20Er%5C%2FYb-doped%20oxyfluoride%20nano-glass%20ceramics.%20%26lt%3Bi%26gt%3BOptical%20Materials%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B10%26lt%3B%5C%2Fi%26gt%3B%2810%29%2C%202695.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOME.402271%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOME.402271%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Femtosecond%20laser%20direct%20inscription%20of%203D%20photonic%20devices%20in%20Er%5C%2FYb-doped%20oxyfluoride%20nano-glass%20ceramics%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joaqu%5Cu00edn%22%2C%22lastName%22%3A%22Fernandez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giulio%22%2C%22lastName%22%3A%22Gorni%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mar%5Cu00eda%20Jes%5Cu00fas%22%2C%22lastName%22%3A%22Pascual%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alicia%22%2C%22lastName%22%3A%22Duran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rolindes%22%2C%22lastName%22%3A%22Balda%22%7D%5D%2C%22abstractNote%22%3A%22The%20fabrication%20of%20optical%20waveguides%20by%20direct%20femtosecond%20laser%20irradiation%20in%20Er%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2FYb%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20oxyfluoride%20nano-glass%20ceramics%20is%20investigated.%20Following%20the%20strategy%20of%20single%20line%20irradiation%2C%20a%20wide%20range%20of%20laser%20parameters%20can%20be%20used%20to%20obtain%20single-mode%20waveguides%20with%20nearly-gaussian%20modal%20profiles%2C%20in%20the%20visible%20and%20near-infrared.%20Measured%20propagation%20loss%20is%201.6%5Cu2005dB%5C%2Fcm%20for%20the%20optimum%20parameters%20%280.34%20%5Cu03bcJ%5C%2Fpulse%20and%2020%5Cu2005%5Cu03bcm%5C%2Fs%20scanning%20velocity%29%2C%20with%20no%20annealing%20after%20irradiation%2C%20and%20the%20induced%20refractive%20index%20contrast%20is%20%5Cu0394n%5Cu223c0.006%20%28at%20800%5Cu2005nm%29.%20The%20multi-scan%20technique%20is%20used%20to%20gain%20control%20of%20the%20refractive%20index%20profiles%20thus%20producing%20multimodal%20structures.%20The%20active%20behavior%20of%20the%20waveguides%20is%20induced%20under%20%5Cu223c800%5Cu2005nm%20seeding%20and%20the%20co-propagating%20guidance%20of%20the%20erbium%20emission%20is%20demonstrated.%20The%20integration%20of%20photonic%20elements%20such%20as%20Y-splitters%2C%20both%20in%202D%20and%203D%2C%20as%20well%20as%20Mach-Zehnder%20interferometers%2C%20is%20also%20shown.%20Results%20demonstrate%20the%20optimum%20behavior%20of%20Er%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2FYb%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20oxyfluoride%20nano-glass%20ceramics%20as%20a%20host%20material%20for%20the%20integration%20of%20complex%20active%20photonic%20devices%20by%20femtosecond%20laser%20irradiation%20in%20the%20low%20repetition%20rate%20regime.%22%2C%22date%22%3A%222020-10-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOME.402271%22%2C%22ISSN%22%3A%222159-3930%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dome-10-10-2695%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A37Z%22%7D%7D%2C%7B%22key%22%3A%22TX6KX3PG%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vivas%20et%20al.%22%2C%22parsedDate%22%3A%222020-09-09%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BVivas%2C%20L.%20G.%2C%20Yanes%2C%20R.%2C%20Berkov%2C%20D.%2C%20Erokhin%2C%20S.%2C%20Bersweiler%2C%20M.%2C%20Honecker%2C%20D.%2C%20Bender%2C%20P.%2C%20%26amp%3B%20Michels%2C%20A.%20%282020%29.%20Toward%20Understanding%20Complex%20Spin%20Textures%20in%20Nanoparticles%20by%20Magnetic%20Neutron%20Scattering.%20%26lt%3Bi%26gt%3BPhysical%20Review%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B125%26lt%3B%5C%2Fi%26gt%3B%2811%29%2C%20117201.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.125.117201%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.125.117201%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Toward%20Understanding%20Complex%20Spin%20Textures%20in%20Nanoparticles%20by%20Magnetic%20Neutron%20Scattering%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%20G.%22%2C%22lastName%22%3A%22Vivas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rocio%22%2C%22lastName%22%3A%22Yanes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dmitry%22%2C%22lastName%22%3A%22Berkov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sergey%22%2C%22lastName%22%3A%22Erokhin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathias%22%2C%22lastName%22%3A%22Bersweiler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dirk%22%2C%22lastName%22%3A%22Honecker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Bender%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Michels%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-9-9%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevLett.125.117201%22%2C%22ISSN%22%3A%220031-9007%2C%201079-7114%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevLett.125.117201%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A32Z%22%7D%7D%2C%7B%22key%22%3A%22PHJ7VLDP%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Whelan%20et%20al.%22%2C%22parsedDate%22%3A%222020-05-13%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BWhelan%2C%20P.%20R.%2C%20Shen%2C%20Q.%2C%20Zhou%2C%20B.%2C%20Serrano%2C%20I.%20G.%2C%20Kamalakar%2C%20M.%20V.%2C%20Mackenzie%2C%20D.%20M.%20A.%2C%20Ji%2C%20J.%2C%20Huang%2C%20D.%2C%20Shi%2C%20H.%2C%20Luo%2C%20D.%2C%20Wang%2C%20M.%2C%20Ruoff%2C%20R.%20S.%2C%20Jauho%2C%20A.-P.%2C%20Jepsen%2C%20P.%20U.%2C%20B%26%23xF8%3Bggild%2C%20P.%2C%20%26amp%3B%20Caridad%2C%20J.%20M.%20%282020%29.%20Fermi%20velocity%20renormalization%20in%20graphene%20probed%20by%20terahertz%20time-domain%20spectroscopy.%20%26lt%3Bi%26gt%3B2D%20Materials%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B7%26lt%3B%5C%2Fi%26gt%3B%283%29%2C%20035009.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2053-1583%5C%2Fab81b0%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2053-1583%5C%2Fab81b0%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Fermi%20velocity%20renormalization%20in%20graphene%20probed%20by%20terahertz%20time-domain%20spectroscopy%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%20R%22%2C%22lastName%22%3A%22Whelan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qian%22%2C%22lastName%22%3A%22Shen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Binbin%22%2C%22lastName%22%3A%22Zhou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I%20G%22%2C%22lastName%22%3A%22Serrano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%20Venkata%22%2C%22lastName%22%3A%22Kamalakar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20M%20A%22%2C%22lastName%22%3A%22Mackenzie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jie%22%2C%22lastName%22%3A%22Ji%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deping%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Haofei%22%2C%22lastName%22%3A%22Shi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Da%22%2C%22lastName%22%3A%22Luo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Meihui%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rodney%20S%22%2C%22lastName%22%3A%22Ruoff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antti-Pekka%22%2C%22lastName%22%3A%22Jauho%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20U%22%2C%22lastName%22%3A%22Jepsen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22B%5Cu00f8ggild%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M%22%2C%22lastName%22%3A%22Caridad%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-05-13%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F2053-1583%5C%2Fab81b0%22%2C%22ISSN%22%3A%222053-1583%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F2053-1583%5C%2Fab81b0%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A17Z%22%7D%7D%5D%7D
Alonso, B., Lopez-Quintas, I., Holgado, W., Drevinskas, R., Kazansky, P. G., Hernández-García, C., & Sola, Í. J. (2020). Complete spatiotemporal and polarization characterization of ultrafast vector beams. Communications Physics, 3(1), 151. https://doi.org/10.1038/s42005-020-00419-w
Alonso, B., Holgado, W., & Sola, Í. J. (2020). Compact in-line temporal measurement of laser pulses with amplitude swing. Optics Express, 28(10), 15625. https://doi.org/10.1364/OE.386321
Alonso, B., Torres-Peiró, S., Romero, R., Guerreiro, P. T., Almagro-Ruiz, A., Muñoz-Marco, H., Pérez-Millán, P., & Crespo, H. (2020). Detection and elimination of pulse train instabilities in broadband fibre lasers using dispersion scan. Scientific Reports, 10(1), 7242. https://doi.org/10.1038/s41598-020-64109-x
Alvaredo-Atienza, A., Fernández-Blázquez, J. P., Castell, P., & Guzman De Villoria, R. (2020). Production of graphene nanoplate/polyetheretherketone composites by semi-industrial melt-compounding. Heliyon, 6(4), e03740. https://doi.org/10.1016/j.heliyon.2020.e03740
Bae, J. E., Park, T. G., Kifle, E., Mateos, X., Aguiló, M., Díaz, F., Romero, C., Rodríguez Vázquez De Aldana, J., Lee, H., & Rotermund, F. (2020). Carbon nanotube Q-switched Yb:KLuW surface channel waveguide lasers. Optics Letters, 45(1), 216. https://doi.org/10.1364/OL.45.000216
Bae, J. E., Mateos, X., Aguiló, M., Díaz, F., Vázquez De Aldana, J. R., Romero, C., Lee, H., & Rotermund, F. (2020). Transition of pulsed operation from Q-switching to continuous-wave mode-locking in a Yb:KLuW waveguide laser. Optics Express, 28(12), 18027. https://doi.org/10.1364/OE.395701
Brigner, W. H., Hu, X., Hassan, N., Jiang-Wei, L., Bennett, C. H., Garcia-Sanchez, F., Akinola, O., Pasquale, M., Marinella, M. J., Incorvia, J. A. C., & Friedman, J. S. (2020). Three Artificial Spintronic Leaky Integrate-and-Fire Neurons. SPIN, 10(02), 2040003. https://doi.org/10.1142/S2010324720400032
Castilla, D., Yanes, R., Sinusía, M., Fuentes, G., Grandal, J., Maicas, M., Álvarez-Arenas, T. E. G., Muñoz, M., Torres, L., López, L., & Prieto, J. L. (2020). Magnetization process of a ferromagnetic nanostrip under the influence of a surface acoustic wave. Scientific Reports, 10(1), 9413. https://doi.org/10.1038/s41598-020-66144-0
Claps, G., Cordella, F., Pacella, D., Romano, A., Murtas, F., Batani, D., Turianska, O., Raffestin, D., Volpe, L., Zerauili, G., Perez-Hernandez, J. A., & Malko, S. (2020). Soft X-ray measurements with a gas detector coupled to microchips in laser-plasma experiments at VEGA-2. Journal of Instrumentation, 15(02), C02006–C02006. https://doi.org/10.1088/1748-0221/15/02/C02006
De Las Heras, A., Hernández-García, C., & Plaja, L. (2020). Spectral signature of back reaction in correlated electron dynamics in intense electromagnetic fields. Physical Review Research, 2(3), 033047. https://doi.org/10.1103/PhysRevResearch.2.033047
Dieny, B., Prejbeanu, I. L., Garello, K., Gambardella, P., Freitas, P., Lehndorff, R., Raberg, W., Ebels, U., Demokritov, S. O., Akerman, J., Deac, A., Pirro, P., Adelmann, C., Anane, A., Chumak, A. V., Hirohata, A., Mangin, S., Valenzuela, S. O., Onbaşlı, M. C., … Bortolotti, P. (2020). Opportunities and challenges for spintronics in the microelectronics industry. Nature Electronics, 3(8), 446–459. https://doi.org/10.1038/s41928-020-0461-5
Garcia-Sanchez, F., Soares, G., & Pasquale, M. (2020). A comparison of two different mechanisms for deterministic spin orbit torque magnetization switching. Journal of Magnetism and Magnetic Materials, 508, 166700. https://doi.org/10.1016/j.jmmm.2020.166700
Gómez-Gómez, A., Ramírez, C., Llorente, J., Garcia, A., Moreno, P., Reveron, H., Chevalier, J., Osendi, M. I., Belmonte, M., & Miranzo, P. (2020). Improved crack resistance and thermal conductivity of cubic zirconia containing graphene nanoplatelets. Journal of the European Ceramic Society, 40(4), 1557–1565. https://doi.org/10.1016/j.jeurceramsoc.2019.12.016
Grillo, A., Di Bartolomeo, A., Urban, F., Passacantando, M., Caridad, J. M., Sun, J., & Camilli, L. (2020). Observation of 2D Conduction in Ultrathin Germanium Arsenide Field-Effect Transistors. ACS Applied Materials & Interfaces, 12(11), 12998–13004. https://doi.org/10.1021/acsami.0c00348
Herrera Diez, L., Ummelen, F., Jeudy, V., Durin, G., Lopez-Diaz, L., Diaz-Pardo, R., Casiraghi, A., Agnus, G., Bouville, D., Langer, J., Ocker, B., Lavrijsen, R., Swagten, H. J. M., & Ravelosona, D. (2020). Magnetic domain wall curvature induced by wire edge pinning. Applied Physics Letters, 117(6), 062406. https://doi.org/10.1063/5.0010798
Husain, S., Chen, X., Gupta, R., Behera, N., Kumar, P., Edvinsson, T., García-Sánchez, F., Brucas, R., Chaudhary, S., Sanyal, B., Svedlindh, P., & Kumar, A. (2020). Large Damping-Like Spin–Orbit Torque in a 2D Conductive 1T-TaS 2 Monolayer. Nano Letters, 20(9), 6372–6380. https://doi.org/10.1021/acs.nanolett.0c01955
Kifle, E., Loiko, P., Romero, C., Vázquez De Aldana, J. R., Aguiló, M., Díaz, F., Camy, P., Griebner, U., Petrov, V., & Mateos, X. (2020). Watt-level ultrafast laser inscribed thulium waveguide lasers. Progress in Quantum Electronics, 72, 100266. https://doi.org/10.1016/j.pquantelec.2020.100266
Kifle, E., Loiko, P., Romero, C., De Aldana, J. R. V., Zakharov, V., Veniaminov, A., Griebner, U., Petrov, V., Camy, P., Braud, A., Aguilo, M., Diaz, F., & Mateos, X. (2020). Ultrafast Laser Inscription and ∼2 μm Laser Operation of Y-Branch Splitters in Monoclinic Crystals. Journal of Lightwave Technology, 38(16), 4374–4384. https://doi.org/10.1109/JLT.2020.2986474
Kifle, E., Loiko, P., Vázquez De Aldana, J. R., Romero, C., Llamas, V., Serres, J. M., Aguiló, M., Díaz, F., Zhang, L., Lin, Z., Lin, H., Zhang, G., Zakharov, V., Veniaminov, A., Petrov, V., Griebner, U., Mateos, X., Wang, L., & Chen, W. (2020). Low-loss fs-laser-written surface waveguide lasers at >2 µm in monoclinic Tm 3+ :MgWO 4. Optics Letters, 45(14), 4060. https://doi.org/10.1364/OL.395811
Li, L., Li, Z., Nie, W., Romero, C., De Aldana, J. R. V., & Chen, F. (2020). Femtosecond-Laser-Written S-Curved Waveguide in Nd:YAP Crystal: Fabrication and Multi-Gigahertz Lasing. Journal of Lightwave Technology, 38(24), 6845–6852. https://doi.org/10.1109/JLT.2020.3015690
Li, L., Zhang, B., Romero, C., Vázquez De Aldana, J. R., Wang, L., & Chen, F. (2020). Tunable violet radiation in a quasi-phase-matched periodically poled stoichiometric lithium tantalate waveguide by direct femtosecond laser writing. Results in Physics, 19, 103373. https://doi.org/10.1016/j.rinp.2020.103373
Llamas, V., Loiko, P., Kifle, E., Romero, C., Vázquez De Aldana, J. R., Pan, Z., Serres, J. M., Yuan, H., Dai, X., Cai, H., Wang, Y., Zhao, Y., Zakharov, V., Veniaminov, A., Thouroude, R., Laroche, M., Gilles, H., Aguiló, M., Díaz, F., … Mateos, X. (2020). Ultrafast laser inscribed waveguide lasers in Tm:CALGO with depressed-index cladding. Optics Express, 28(3), 3528. https://doi.org/10.1364/OE.384258
Longman, A., Salgado, C., Zeraouli, G., Apiñaniz, J. I., Antonio Pérez-Hernández, J., Eltahlawy, M. K., Volpe, L., & Fedosejevs, R. (2020). Off-axis spiral phase mirrors for generating high-intensity optical vortices. Optics Letters, 45(8), 2187. https://doi.org/10.1364/OL.387363
Lopez-Quintas, I., Holgado, W., Drevinskas, R., Kazansky, P. G., Sola, Í. J., & Alonso, B. (2020). Optical vortex production mediated by azimuthal index of radial polarization. Journal of Optics, 22(9), 095402. https://doi.org/10.1088/2040-8986/aba813
Lv, J., Hong, B., Tan, Y., Chen, F., Rodríguez Vázquez De Aldana, J., & Wang, G. P. (2020). Mid-infrared waveguiding in three-dimensional microstructured optical waveguides fabricated by femtosecond-laser writing and phosphoric acid etching. Photonics Research, 8(3), 257. https://doi.org/10.1364/PRJ.380215
Martínez, E., Raposo, V., & Alejos, Ó. (2020). Current driven domain wall dynamics in ferrimagnetic strips explained by means of a two interacting sublattices model. AIP Advances, 10(1), 015202. https://doi.org/10.1063/1.5130054
Martínez, E., Raposo, V., & Alejos, Ó. (2020). Novel interpretation of recent experiments on the dynamics of domain walls along ferrimagnetic strips. Journal of Physics: Condensed Matter, 32(46), 465803. https://doi.org/10.1088/1361-648X/aba7eb
Morales-Vidal, M., Sola, Í. J., Castillo, G. R., R. Vázquez De Aldana, J., & Alonso, B. (2020). Ultrashort pulse propagation through depressed-cladding channel waveguides in YAG crystal: Spatio-temporal characterization. Optics & Laser Technology, 123, 105898. https://doi.org/10.1016/j.optlastec.2019.105898
Nelissen, K., Liszi, M., Marco, M. D., Ospina, V., Drotár, I., Gatti, G., Kamperidis, C., & Volpe, L. (2020). Characterisation and Modelling of Ultrashort Laser-Driven Electromagnetic Pulses. Scientific Reports, 10(1), 3108. https://doi.org/10.1038/s41598-020-59882-8
Pasley, J., Andrianaki, G., Apiñaniz, J. I., Baroutsos, A., Batani, D., Benis, E. P., Ciardi, A., Cook, D., De Marco, M., Dimitriou, V., Dromey, B., Fitilis, I., Gatti, G., Grigoriadis, A., Huault, M., Pérez Hernández, J. A., Kaselouris, E., Klimo, O., Koenig, M., … Tatarakis, M. (2020). Innovative education and training in high power laser plasmas (PowerLaPs) for plasma physics, high power laser matter interactions and high energy density physics: experimental diagnostics and simulations – CORRIGENDUM. High Power Laser Science and Engineering, 8, e9. https://doi.org/10.1017/hpl.2020.12
Prada-Rodrigo, J., Rodríguez-Beltrán, R. I., Paszkiewicz, S., Szymczyk, A., Ezquerra, T. A., Moreno, P., & Rebollar, E. (2020). Laser-Induced Periodic Surface Structuring of Poly(trimethylene terephthalate) Films Containing Tungsten Disulfide Nanotubes. Polymers, 12(5), 1090. https://doi.org/10.3390/polym12051090
Puttock, R., Manzin, A., Neu, V., Garcia‐Sanchez, F., Fernandez Scarioni, A., Schumacher, H. W., & Kazakova, O. (2020). Modal Frustration and Periodicity Breaking in Artificial Spin Ice. Small, 16(42), 2003141. https://doi.org/10.1002/smll.202003141
Rajib, M. M., Misba, W. A., Bhattacharya, D., Garcia-Sanchez, F., & Atulasimha, J. (2020). Dynamic Skyrmion-Mediated Switching of Perpendicular MTJs: Feasibility Analysis of Scaling to 20 nm With Thermal Noise. IEEE Transactions on Electron Devices, 67(9), 3883–3888. https://doi.org/10.1109/TED.2020.3011659
Raposo, V., Guedas, R., García-Sánchez, F., Hernández, M. A., Zazo, M., & Martínez, E. (2020). Micromagnetic Modeling of All Optical Switching of Ferromagnetic Thin Films: The Role of Inverse Faraday Effect and Magnetic Circular Dichroism. Applied Sciences, 10(4), 1307. https://doi.org/10.3390/app10041307
Rego, L., San Román, J., Plaja, L., & Hernández-García, C. (2020). Trains of attosecond pulses structured with time-ordered polarization states. Optics Letters, 45(20), 5636. https://doi.org/10.1364/OL.404402
Rego, L., Hernández-García, C., Picón, A., & Plaja, L. (2020). Site-specific tunnel-ionization in high harmonic generation in molecules. New Journal of Physics, 22(4), 043012. https://doi.org/10.1088/1367-2630/ab7dde
Rodriguez-Losada, N., Wendelbob, R., Ocaña, M. C., Casares, A. D., Guzman De Villoría, R., Aguirre Gomez, J. A., Arraez, M. A., Gonzalez-Alegre, P., Medina, M. A., Arenas, E., & Narvaez, J. A. (2020). Graphene Oxide and Reduced Derivatives, as Powder or Film Scaffolds, Differentially Promote Dopaminergic Neuron Differentiation and Survival. Frontiers in Neuroscience, 14, 570409. https://doi.org/10.3389/fnins.2020.570409
Rueda, P., Videla, F., Neyra, E., Pérez-Hernández, J. A., Ciappina, M. F., & Torchia, G. A. (2020). Above-threshold ionization driven by few-cycle spatially bounded inhomogeneous laser fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 53(6), 065403. https://doi.org/10.1088/1361-6455/ab63ab
Ruiz-Gómez, S., Fernández-González, C., Martínez, E., Raposo, V., Sorrentino, A., Foerster, M., Aballe, L., Mascaraque, A., Ferrer, S., & Pérez, L. (2020). Helical surface magnetization in nanowires: the role of chirality. Nanoscale, 12(34), 17880–17885. https://doi.org/10.1039/D0NR05424K
Salgado-Remacha, F. J., Alonso, B., Crespo, H., Cojocaru, C., Trull, J., Romero, R., López-Ripa, M., Guerreiro, P. T., Silva, F., Miranda, M., L’Huillier, A., Arnold, C. L., & Sola, Í. J. (2020). Single-shot d-scan technique for ultrashort laser pulse characterization using transverse second-harmonic generation in random nonlinear crystals. Optics Letters, 45(14), 3925. https://doi.org/10.1364/OL.397033
Sanz-Garcia, A., Sodupe-Ortega, E., Pernía-Espinoza, A., Shimizu, T., & Escobedo-Lucea, C. (2020). A Versatile Open-Source Printhead for Low-Cost 3D Microextrusion-Based Bioprinting. Polymers, 12(10), 2346. https://doi.org/10.3390/polym12102346
Shi, X., Liao, C.-T., Tao, Z., Cating-Subramanian, E., Murnane, M. M., Hernández-García, C., & Kapteyn, H. C. (2020). Attosecond light science and its application for probing quantum materials. Journal of Physics B: Atomic, Molecular and Optical Physics, 53(18), 184008. https://doi.org/10.1088/1361-6455/aba2fb
Sola, Í. J., & Alonso, B. (2020). Robustness and capabilities of ultrashort laser pulses characterization with amplitude swing. Scientific Reports, 10(1), 18364. https://doi.org/10.1038/s41598-020-75220-4
Sola, D., Aldana, J. R. V. D., & Artal, P. (2020). The Role of Thermal Accumulation on the Fabrication of Diffraction Gratings in Ophthalmic PHEMA by Ultrashort Laser Direct Writing. Polymers, 12(12), 2965. https://doi.org/10.3390/polym12122965
Sun, J., Passacantando, M., Palummo, M., Nardone, M., Kaasbjerg, K., Grillo, A., Di Bartolomeo, A., Caridad, J. M., & Camilli, L. (2020). Impact of Impurities on the Electrical Conduction of Anisotropic Two-Dimensional Materials. Physical Review Applied, 13(4), 044063. https://doi.org/10.1103/PhysRevApplied.13.044063
Sun, J., Camilli, L., Caridad, J. M., Santos, J. E., & Liu, Y. (2020). Spontaneous adsorption of ions on graphene at the electrolyte–graphene interface. Applied Physics Letters, 117(20), 203102. https://doi.org/10.1063/5.0023191
Urraca, R., Sanz-Garcia, A., & Sanz-Garcia, I. (2020). BQC: A free web service to quality control solar irradiance measurements across Europe. Solar Energy, 211, 1–10. https://doi.org/10.1016/j.solener.2020.09.055
Vázquez De Aldana, J. R., Romero, C., Fernandez, J., Gorni, G., Pascual, M. J., Duran, A., & Balda, R. (2020). Femtosecond laser direct inscription of 3D photonic devices in Er/Yb-doped oxyfluoride nano-glass ceramics. Optical Materials Express, 10(10), 2695. https://doi.org/10.1364/OME.402271
Vivas, L. G., Yanes, R., Berkov, D., Erokhin, S., Bersweiler, M., Honecker, D., Bender, P., & Michels, A. (2020). Toward Understanding Complex Spin Textures in Nanoparticles by Magnetic Neutron Scattering. Physical Review Letters, 125(11), 117201. https://doi.org/10.1103/PhysRevLett.125.117201
Whelan, P. R., Shen, Q., Zhou, B., Serrano, I. G., Kamalakar, M. V., Mackenzie, D. M. A., Ji, J., Huang, D., Shi, H., Luo, D., Wang, M., Ruoff, R. S., Jauho, A.-P., Jepsen, P. U., Bøggild, P., & Caridad, J. M. (2020). Fermi velocity renormalization in graphene probed by terahertz time-domain spectroscopy. 2D Materials, 7(3), 035009. https://doi.org/10.1088/2053-1583/ab81b0

8111616 N7Z8DZV2 2019 1 apa 50 creator asc 1 7184 https://lumes.usal.es/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%228PXMYUN2%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Alonso%20and%20Sola%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BAlonso%2C%20B.%2C%20%26amp%3B%20Sola%2C%20I.%20%282019%29.%20Measurement%20of%20Ultrashort%20Vector%20Pulses%20From%20Polarization%20Gates%20by%20In-Line%2C%20Single-Channel%20Spectral%20Interferometry.%20%26lt%3Bi%26gt%3BIEEE%20Journal%20of%20Selected%20Topics%20in%20Quantum%20Electronics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B25%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%201%26%23×2013%3B7.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FJSTQE.2019.2906266%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FJSTQE.2019.2906266%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Measurement%20of%20Ultrashort%20Vector%20Pulses%20From%20Polarization%20Gates%20by%20In-Line%2C%20Single-Channel%20Spectral%20Interferometry%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%22%2C%22lastName%22%3A%22Alonso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Inigo%22%2C%22lastName%22%3A%22Sola%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%227%5C%2F2019%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FJSTQE.2019.2906266%22%2C%22ISSN%22%3A%221077-260X%2C%201558-4542%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F8675378%5C%2F%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A22Z%22%7D%7D%2C%7B%22key%22%3A%222YIIMJVF%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Alvaredo%20et%20al.%22%2C%22parsedDate%22%3A%222019-01-12%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BAlvaredo%2C%20%26%23xC1%3B.%2C%20Mart%26%23xED%3Bn%2C%20M.%2C%20Castell%2C%20P.%2C%20Guzm%26%23xE1%3Bn%20De%20Villoria%2C%20R.%2C%20%26amp%3B%20Fern%26%23xE1%3Bndez-Bl%26%23xE1%3Bzquez%2C%20J.%20%282019%29.%20Non-Isothermal%20Crystallization%20Behavior%20of%20PEEK%5C%2FGraphene%20Nanoplatelets%20Composites%20from%20Melt%20and%20Glass%20States.%20%26lt%3Bi%26gt%3BPolymers%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B11%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%20124.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fpolym11010124%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fpolym11010124%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Non-Isothermal%20Crystallization%20Behavior%20of%20PEEK%5C%2FGraphene%20Nanoplatelets%20Composites%20from%20Melt%20and%20Glass%20States%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00c1ngel%22%2C%22lastName%22%3A%22Alvaredo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mar%5Cu00eda%22%2C%22lastName%22%3A%22Mart%5Cu00edn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pere%22%2C%22lastName%22%3A%22Castell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberto%22%2C%22lastName%22%3A%22Guzm%5Cu00e1n%20De%20Villoria%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juan%22%2C%22lastName%22%3A%22Fern%5Cu00e1ndez-Bl%5Cu00e1zquez%22%7D%5D%2C%22abstractNote%22%3A%22The%20effect%20of%20the%20graphene%20nanoplateletets%20%28GNP%29%2C%20at%20concentration%20of%201%2C%205%20and%2010%20wt%20%25%2C%20in%20Poly%20ether%20ether%20ketone%20%28PEEK%29%20composite%20crystallization%20from%20melt%20and%20during%20cold%20crystallization%20were%20investigated%20by%20differential%20scanning%20calorimetry%20%28DSC%29%20and%20real%20time%20X-ray%20diffraction%20experiments.%20DSC%20results%20revealed%20a%20double%20effect%20of%20GNP%3A%20%28a%29%20nucleating%20effect%20crystallization%20from%20melt%20started%20at%20higher%20temperatures%20and%20%28b%29%20longer%20global%20crystallization%20time%20due%20to%20the%20restriction%20in%20the%20polymer%20chain%20mobility.%20This%20hindered%20mobility%20were%20proved%20by%20rheological%20behavior%20of%20nanocomposites%2C%20because%20to%20the%20increase%20of%20complex%20viscosity%2C%20G%5Cu2032%2C%20G%5Cu2033%20with%20the%20GNP%20content%2C%20as%20well%20as%20the%20non-Newtonian%20behavior%20found%20in%20composites%20with%20high%20GNP%20content.%20Finally%2C%20real%20time%20wide%20and%20small%20angle%20synchrotron%20X-ray%20radiation%20%28WAXS%5C%2FSAXS%29%20X-ray%20measurements%20showed%20that%20GNP%20has%20not%20affected%20the%20orthorhombic%20phase%20of%20PEEK%20nor%20the%20evolution%20of%20the%20crystal%20phase%20during%20the%20crystallization%20processes.%20However%2C%20the%20correlation%20length%20of%20the%20crystal%20obtained%20by%20WAXS%20and%20the%20long%20period%20%28L%29%20by%20SAXS%20varied%20depending%20on%20the%20GNP%20content.%22%2C%22date%22%3A%222019-01-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fpolym11010124%22%2C%22ISSN%22%3A%222073-4360%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F2073-4360%5C%2F11%5C%2F1%5C%2F124%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A36Z%22%7D%7D%2C%7B%22key%22%3A%22GXMXD72F%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Amini%20et%20al.%22%2C%22parsedDate%22%3A%222019-11-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BAmini%2C%20K.%2C%20Biegert%2C%20J.%2C%20Calegari%2C%20F.%2C%20Chac%26%23xF3%3Bn%2C%20A.%2C%20Ciappina%2C%20M.%20F.%2C%20Dauphin%2C%20A.%2C%20Efimov%2C%20D.%20K.%2C%20Figueira%20De%20Morisson%20Faria%2C%20C.%2C%20Giergiel%2C%20K.%2C%20Gniewek%2C%20P.%2C%20Landsman%2C%20A.%20S.%2C%20Lesiuk%2C%20M.%2C%20Mandrysz%2C%20M.%2C%20Maxwell%2C%20A.%20S.%2C%20Moszy%26%23×144%3Bski%2C%20R.%2C%20Ortmann%2C%20L.%2C%20Antonio%20P%26%23xE9%3Brez-Hern%26%23xE1%3Bndez%2C%20J.%2C%20Pic%26%23xF3%3Bn%2C%20A.%2C%20Pisanty%2C%20E.%2C%20%26%23×2026%3B%20Lewenstein%2C%20M.%20%282019%29.%20Symphony%20on%20strong%20field%20approximation.%20%26lt%3Bi%26gt%3BReports%20on%20Progress%20in%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B82%26lt%3B%5C%2Fi%26gt%3B%2811%29%2C%20116001.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6633%5C%2Fab2bb1%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6633%5C%2Fab2bb1%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Symphony%20on%20strong%20field%20approximation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kasra%22%2C%22lastName%22%3A%22Amini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jens%22%2C%22lastName%22%3A%22Biegert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesca%22%2C%22lastName%22%3A%22Calegari%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexis%22%2C%22lastName%22%3A%22Chac%5Cu00f3n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marcelo%20F%22%2C%22lastName%22%3A%22Ciappina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandre%22%2C%22lastName%22%3A%22Dauphin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dmitry%20K%22%2C%22lastName%22%3A%22Efimov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carla%22%2C%22lastName%22%3A%22Figueira%20De%20Morisson%20Faria%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Krzysztof%22%2C%22lastName%22%3A%22Giergiel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Piotr%22%2C%22lastName%22%3A%22Gniewek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandra%20S%22%2C%22lastName%22%3A%22Landsman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Micha%5Cu0142%22%2C%22lastName%22%3A%22Lesiuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Micha%5Cu0142%22%2C%22lastName%22%3A%22Mandrysz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20S%22%2C%22lastName%22%3A%22Maxwell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Moszy%5Cu0144ski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lisa%22%2C%22lastName%22%3A%22Ortmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jose%22%2C%22lastName%22%3A%22Antonio%20P%5Cu00e9rez-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Pic%5Cu00f3n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emilio%22%2C%22lastName%22%3A%22Pisanty%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jakub%22%2C%22lastName%22%3A%22Prauzner-Bechcicki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Krzysztof%22%2C%22lastName%22%3A%22Sacha%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Noslen%22%2C%22lastName%22%3A%22Su%5Cu00e1rez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amelle%22%2C%22lastName%22%3A%22Za%5Cu00efr%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jakub%22%2C%22lastName%22%3A%22Zakrzewski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maciej%22%2C%22lastName%22%3A%22Lewenstein%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-11-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6633%5C%2Fab2bb1%22%2C%22ISSN%22%3A%220034-4885%2C%201361-6633%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6633%5C%2Fab2bb1%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A24%3A04Z%22%7D%7D%2C%7B%22key%22%3A%227VGJYC85%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Blanco%20et%20al.%22%2C%22parsedDate%22%3A%222019-01-16%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BBlanco%2C%20M.%2C%20Cambronero%2C%20F.%2C%20Flores-Arias%2C%20M.%20T.%2C%20Conejero%20Jarque%2C%20E.%2C%20Plaja%2C%20L.%2C%20%26amp%3B%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%20%282019%29.%20Ultraintense%20Femtosecond%20Magnetic%20Nanoprobes%20Induced%20by%20Azimuthally%20Polarized%20Laser%20Beams.%20%26lt%3Bi%26gt%3BACS%20Photonics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B6%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%2038%26%23×2013%3B42.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsphotonics.8b01312%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsphotonics.8b01312%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ultraintense%20Femtosecond%20Magnetic%20Nanoprobes%20Induced%20by%20Azimuthally%20Polarized%20Laser%20Beams%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manuel%22%2C%22lastName%22%3A%22Blanco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ferran%22%2C%22lastName%22%3A%22Cambronero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20Teresa%22%2C%22lastName%22%3A%22Flores-Arias%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Enrique%22%2C%22lastName%22%3A%22Conejero%20Jarque%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-01-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsphotonics.8b01312%22%2C%22ISSN%22%3A%222330-4022%2C%202330-4022%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsphotonics.8b01312%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22CQXM3RQK%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Brigner%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BBrigner%2C%20W.%20H.%2C%20Friedman%2C%20J.%20S.%2C%20Hassan%2C%20N.%2C%20Jiang-Wei%2C%20L.%2C%20Hu%2C%20X.%2C%20Saha%2C%20D.%2C%20Bennett%2C%20C.%20H.%2C%20Marinella%2C%20M.%20J.%2C%20Incorvia%2C%20J.%20A.%20C.%2C%20%26amp%3B%20Garcia-Sanchez%2C%20F.%20%282019%29.%20Shape-Based%20Magnetic%20Domain%20Wall%20Drift%20for%20an%20Artificial%20Spintronic%20Leaky%20Integrate-and-Fire%20Neuron.%20%26lt%3Bi%26gt%3BIEEE%20Transactions%20on%20Electron%20Devices%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B66%26lt%3B%5C%2Fi%26gt%3B%2811%29%2C%204970%26%23×2013%3B4975.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTED.2019.2938952%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTED.2019.2938952%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Shape-Based%20Magnetic%20Domain%20Wall%20Drift%20for%20an%20Artificial%20Spintronic%20Leaky%20Integrate-and-Fire%20Neuron%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wesley%20H.%22%2C%22lastName%22%3A%22Brigner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joseph%20S.%22%2C%22lastName%22%3A%22Friedman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Naimul%22%2C%22lastName%22%3A%22Hassan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucian%22%2C%22lastName%22%3A%22Jiang-Wei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuan%22%2C%22lastName%22%3A%22Hu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Diptish%22%2C%22lastName%22%3A%22Saha%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%20H.%22%2C%22lastName%22%3A%22Bennett%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20J.%22%2C%22lastName%22%3A%22Marinella%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean%20Anne%20C.%22%2C%22lastName%22%3A%22Incorvia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Garcia-Sanchez%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2211%5C%2F2019%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FTED.2019.2938952%22%2C%22ISSN%22%3A%220018-9383%2C%201557-9646%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F8844255%5C%2F%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A24%3A50Z%22%7D%7D%2C%7B%22key%22%3A%22JRMZ2CWH%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Caridad%20et%20al.%22%2C%22parsedDate%22%3A%222019-05-06%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCaridad%2C%20J.%20M.%2C%20Power%2C%20S.%20R.%2C%20Shylau%2C%20A.%20A.%2C%20Gammelgaard%2C%20L.%2C%20Jauho%2C%20A.-P.%2C%20%26amp%3B%20B%26%23xF8%3Bggild%2C%20P.%20%282019%29.%20Gate%20electrostatics%20and%20quantum%20capacitance%20in%20ballistic%20graphene%20devices.%20%26lt%3Bi%26gt%3BPhysical%20Review%20B%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B99%26lt%3B%5C%2Fi%26gt%3B%2819%29%2C%20195408.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.99.195408%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.99.195408%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Gate%20electrostatics%20and%20quantum%20capacitance%20in%20ballistic%20graphene%20devices%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M.%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephen%20R.%22%2C%22lastName%22%3A%22Power%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Artsem%20A.%22%2C%22lastName%22%3A%22Shylau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lene%22%2C%22lastName%22%3A%22Gammelgaard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antti-Pekka%22%2C%22lastName%22%3A%22Jauho%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22B%5Cu00f8ggild%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-5-6%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.99.195408%22%2C%22ISSN%22%3A%222469-9950%2C%202469-9969%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevB.99.195408%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A57Z%22%7D%7D%2C%7B%22key%22%3A%226Z7QMMW4%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Chauwin%20et%20al.%22%2C%22parsedDate%22%3A%222019-12-24%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BChauwin%2C%20M.%2C%20Hu%2C%20X.%2C%20Garcia-Sanchez%2C%20F.%2C%20Betrabet%2C%20N.%2C%20Paler%2C%20A.%2C%20Moutafis%2C%20C.%2C%20%26amp%3B%20Friedman%2C%20J.%20S.%20%282019%29.%20Skyrmion%20Logic%20System%20for%20Large-Scale%20Reversible%20Computation.%20%26lt%3Bi%26gt%3BPhysical%20Review%20Applied%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B12%26lt%3B%5C%2Fi%26gt%3B%286%29%2C%20064053.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.12.064053%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.12.064053%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Skyrmion%20Logic%20System%20for%20Large-Scale%20Reversible%20Computation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maverick%22%2C%22lastName%22%3A%22Chauwin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuan%22%2C%22lastName%22%3A%22Hu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Garcia-Sanchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Neilesh%22%2C%22lastName%22%3A%22Betrabet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandru%22%2C%22lastName%22%3A%22Paler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoforos%22%2C%22lastName%22%3A%22Moutafis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joseph%20S.%22%2C%22lastName%22%3A%22Friedman%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-12-24%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.12.064053%22%2C%22ISSN%22%3A%222331-7019%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevApplied.12.064053%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A24%3A33Z%22%7D%7D%2C%7B%22key%22%3A%22GRZ6FUM7%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Chaves%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BChaves%2C%20F.%20A.%2C%20Jim%26%23xE9%3Bnez%2C%20D.%2C%20Santos%2C%20J.%20E.%2C%20B%26%23xF8%3Bggild%2C%20P.%2C%20%26amp%3B%20Caridad%2C%20J.%20M.%20%282019%29.%20Electrostatics%20of%20metal%26%23×2013%3Bgraphene%20interfaces%3A%20sharp%20p%26%23×2013%3Bn%20junctions%20for%20electron-optical%20applications.%20%26lt%3Bi%26gt%3BNanoscale%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B11%26lt%3B%5C%2Fi%26gt%3B%2821%29%2C%2010273%26%23×2013%3B10281.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FC9NR02029B%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FC9NR02029B%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Electrostatics%20of%20metal%5Cu2013graphene%20interfaces%3A%20sharp%20p%5Cu2013n%20junctions%20for%20electron-optical%20applications%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ferney%20A.%22%2C%22lastName%22%3A%22Chaves%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Jim%5Cu00e9nez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jaime%20E.%22%2C%22lastName%22%3A%22Santos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22B%5Cu00f8ggild%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M.%22%2C%22lastName%22%3A%22Caridad%22%7D%5D%2C%22abstractNote%22%3A%22Electrostatics%20of%20metal-induced%20lateral%20p%5Cu2013n%20junctions%20in%20graphene%20devices%20for%20electron%20optics%20applications.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Creation%20of%20sharp%20lateral%20p%5Cu2013n%20junctions%20in%20graphene%20devices%2C%20with%20transition%20widths%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20w%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20well%20below%20the%20Fermi%20wavelength%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03bb%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20of%20graphene%26%23039%3Bs%20charge%20carriers%2C%20is%20vital%20to%20study%20and%20exploit%20these%20electronic%20systems%20for%20electron-optical%20applications.%20The%20achievement%20of%20such%20junctions%20is%2C%20however%2C%20not%20trivial%20due%20to%20the%20presence%20of%20a%20considerable%20out-of-plane%20electric%20field%20in%20lateral%20p%5Cu2013n%20junctions%2C%20resulting%20in%20large%20widths.%20Metal%5Cu2013graphene%20interfaces%20represent%20a%20novel%2C%20promising%20and%20easy%20to%20implement%20technique%20to%20engineer%20such%20sharp%20lateral%20p%5Cu2013n%20junctions%20in%20graphene%20field-effect%20devices%2C%20in%20clear%20contrast%20to%20the%20much%20wider%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20i.e.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20smooth%29%20junctions%20achieved%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20via%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20conventional%20local%20gating.%20In%20this%20work%2C%20we%20present%20a%20systematic%20and%20robust%20investigation%20of%20the%20electrostatic%20problem%20of%20metal-induced%20lateral%20p%5Cu2013n%20junctions%20in%20gated%20graphene%20devices%20for%20electron-optics%20applications%2C%20systems%20where%20the%20width%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20w%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20of%20the%20created%20junctions%20is%20not%20only%20determined%20by%20the%20metal%20used%20but%20also%20depends%20on%20external%20factors%20such%20as%20device%20geometries%2C%20dielectric%20environment%20and%20different%20operational%20parameters%20such%20as%20carrier%20density%20and%20temperature.%20Our%20calculations%20demonstrate%20that%20sharp%20junctions%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20w%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu226a%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03bb%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20can%20be%20achieved%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20via%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20metal%5Cu2013graphene%20interfaces%20at%20room%20temperature%20in%20devices%20surrounded%20by%20dielectric%20media%20with%20low%20relative%20permittivity%20%28%26lt%3B10%29.%20In%20addition%2C%20we%20show%20how%20specific%20details%20such%20as%20the%20separation%20distance%20between%20metal%20and%20graphene%20and%20the%20permittivity%20of%20the%20gap%20in-between%20plays%20a%20critical%20role%20when%20defining%20the%20p%5Cu2013n%20junction%2C%20not%20only%20defining%20its%20width%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20w%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20but%20also%20the%20energy%20shift%20of%20graphene%20underneath%20the%20metal.%20These%20results%20can%20be%20extended%20to%20any%20two-dimensional%20%282D%29%20electronic%20system%20doped%20by%20the%20presence%20of%20metal%20clusters%20and%20thus%20are%20relevant%20for%20understanding%20interfaces%20between%20metals%20and%20other%202D%20materials.%22%2C%22date%22%3A%222019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FC9NR02029B%22%2C%22ISSN%22%3A%222040-3364%2C%202040-3372%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DC9NR02029B%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22CQDSKSTJ%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Crego%20et%20al.%22%2C%22parsedDate%22%3A%222019-07-02%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCrego%2C%20A.%2C%20Conejero%20Jarque%2C%20E.%2C%20%26amp%3B%20San%20Roman%2C%20J.%20%282019%29.%20Influence%20of%20the%20spatial%20confinement%20on%20the%20self-focusing%20of%20ultrashort%20pulses%20in%20hollow-core%20fibers.%20%26lt%3Bi%26gt%3BScientific%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B9%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%209546.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-019-45940-3%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-019-45940-3%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Influence%20of%20the%20spatial%20confinement%20on%20the%20self-focusing%20of%20ultrashort%20pulses%20in%20hollow-core%20fibers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aurora%22%2C%22lastName%22%3A%22Crego%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Enrique%22%2C%22lastName%22%3A%22Conejero%20Jarque%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%22%2C%22lastName%22%3A%22San%20Roman%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20collapse%20of%20a%20laser%20beam%20propagating%20inside%20a%20hollow-core%20fiber%20is%20investigated%20by%20numerically%20solving%20different%20nonlinear%20propagation%20models.%20We%20have%20identified%20that%20the%20fiber%20confinement%20favors%20the%20spatial%20collapse%2C%20especially%20in%20case%20of%20pulses%20with%20the%20input%20peak%20power%20close%20to%20the%20critical%20value.%20We%20have%20also%20observed%20that%20when%20using%20pulses%20in%20the%20femtosecond%20range%2C%20the%20temporal%20dynamics%20plays%20an%20important%20role%2C%20activating%20the%20spatial%20collapse%20even%20for%20pulses%20with%20input%20peak%20powers%20below%20the%20critical%20value.%20The%20complex%20self-focusing%20dynamics%20observed%20in%20the%20region%20below%20the%20critical%20power%20depends%20on%20the%20temporal%20evolution%20of%20the%20pulse%20and%2C%20also%2C%20on%20the%20interaction%20between%20the%20different%20spatial%20modes%20of%20the%20hollow-core%20fiber.%22%2C%22date%22%3A%222019-07-02%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-019-45940-3%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-019-45940-3%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22ENHLTLP2%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Del%20Barco%20et%20al.%22%2C%22parsedDate%22%3A%222019-09-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BDel%20Barco%2C%20O.%2C%20Sola%2C%20I.%20J.%2C%20Jarque%2C%20E.%20C.%2C%20%26amp%3B%20Bueno%2C%20J.%20M.%20%282019%29.%20Dielectric%20mirror%20optimization%20based%20on%20the%20phase-compensation%20method.%20%26lt%3Bi%26gt%3BJournal%20of%20Optics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B21%26lt%3B%5C%2Fi%26gt%3B%289%29%2C%20095101.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2040-8986%5C%2Fab386e%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2040-8986%5C%2Fab386e%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Dielectric%20mirror%20optimization%20based%20on%20the%20phase-compensation%20method%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O%22%2C%22lastName%22%3A%22Del%20Barco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I%20J%22%2C%22lastName%22%3A%22Sola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E%20Conejero%22%2C%22lastName%22%3A%22Jarque%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%20M%22%2C%22lastName%22%3A%22Bueno%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-09-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F2040-8986%5C%2Fab386e%22%2C%22ISSN%22%3A%222040-8978%2C%202040-8986%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F2040-8986%5C%2Fab386e%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A06Z%22%7D%7D%2C%7B%22key%22%3A%22Q3QJGS93%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Diez%20et%20al.%22%2C%22parsedDate%22%3A%222019-02-27%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BDiez%2C%20L.%20H.%2C%20Voto%2C%20M.%2C%20Casiraghi%2C%20A.%2C%20Belmeguenai%2C%20M.%2C%20Roussign%26%23xE9%3B%2C%20Y.%2C%20Durin%2C%20G.%2C%20Lamperti%2C%20A.%2C%20Mantovan%2C%20R.%2C%20Sluka%2C%20V.%2C%20Jeudy%2C%20V.%2C%20Liu%2C%20Y.%20T.%2C%20Stashkevich%2C%20A.%2C%20Ch%26%23xE9%3Brif%2C%20S.%20M.%2C%20Langer%2C%20J.%2C%20Ocker%2C%20B.%2C%20Lopez-Diaz%2C%20L.%2C%20%26amp%3B%20Ravelosona%2C%20D.%20%282019%29.%20Enhancement%20of%20the%20Dzyaloshinskii-Moriya%20interaction%20and%20domain%20wall%20velocity%20through%20interface%20intermixing%20in%20Ta%5C%2FCoFeB%5C%2FMgO.%20%26lt%3Bi%26gt%3BPhysical%20Review%20B%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B99%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%20054431.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.99.054431%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.99.054431%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Enhancement%20of%20the%20Dzyaloshinskii-Moriya%20interaction%20and%20domain%20wall%20velocity%20through%20interface%20intermixing%20in%20Ta%5C%2FCoFeB%5C%2FMgO%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20Herrera%22%2C%22lastName%22%3A%22Diez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Voto%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Casiraghi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Belmeguenai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Roussign%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Durin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Lamperti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Mantovan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Sluka%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Jeudy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%20T.%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Stashkevich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20M.%22%2C%22lastName%22%3A%22Ch%5Cu00e9rif%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Langer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Ocker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Lopez-Diaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Ravelosona%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-2-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.99.054431%22%2C%22ISSN%22%3A%222469-9950%2C%202469-9969%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevB.99.054431%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A24%3A39Z%22%7D%7D%2C%7B%22key%22%3A%2236UGYAZF%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dorney%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BDorney%2C%20K.%20M.%2C%20Rego%2C%20L.%2C%20Brooks%2C%20N.%20J.%2C%20San%20Rom%26%23xE1%3Bn%2C%20J.%2C%20Liao%2C%20C.-T.%2C%20Ellis%2C%20J.%20L.%2C%20Zusin%2C%20D.%2C%20Gentry%2C%20C.%2C%20Nguyen%2C%20Q.%20L.%2C%20Shaw%2C%20J.%20M.%2C%20Pic%26%23xF3%3Bn%2C%20A.%2C%20Plaja%2C%20L.%2C%20Kapteyn%2C%20H.%20C.%2C%20Murnane%2C%20M.%20M.%2C%20%26amp%3B%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%20%282019%29.%20Controlling%20the%20polarization%20and%20vortex%20charge%20of%20attosecond%20high-harmonic%20beams%20via%20simultaneous%20spin%26%23×2013%3Borbit%20momentum%20conservation.%20%26lt%3Bi%26gt%3BNature%20Photonics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B13%26lt%3B%5C%2Fi%26gt%3B%282%29%2C%20123%26%23×2013%3B130.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41566-018-0304-3%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41566-018-0304-3%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Controlling%20the%20polarization%20and%20vortex%20charge%20of%20attosecond%20high-harmonic%20beams%20via%20simultaneous%20spin%5Cu2013orbit%20momentum%20conservation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kevin%20M.%22%2C%22lastName%22%3A%22Dorney%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%22%2C%22lastName%22%3A%22Rego%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nathan%20J.%22%2C%22lastName%22%3A%22Brooks%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%22%2C%22lastName%22%3A%22San%20Rom%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chen-Ting%22%2C%22lastName%22%3A%22Liao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennifer%20L.%22%2C%22lastName%22%3A%22Ellis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dmitriy%22%2C%22lastName%22%3A%22Zusin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Gentry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Quynh%20L.%22%2C%22lastName%22%3A%22Nguyen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Justin%20M.%22%2C%22lastName%22%3A%22Shaw%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Pic%5Cu00f3n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henry%20C.%22%2C%22lastName%22%3A%22Kapteyn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20M.%22%2C%22lastName%22%3A%22Murnane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222%5C%2F2019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41566-018-0304-3%22%2C%22ISSN%22%3A%221749-4885%2C%201749-4893%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41566-018-0304-3%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A23%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22H3XN5AQF%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Enrique-Jimenez%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BEnrique-Jimenez%2C%20P.%2C%20Quiles-D%26%23xED%3Baz%2C%20S.%2C%20Salavagione%2C%20H.%20J.%2C%20Fern%26%23xE1%3Bndez-Bl%26%23xE1%3Bzquez%2C%20J.%20P.%2C%20Moncl%26%23xFA%3Bs%2C%20M.%20A.%2C%20Guzman%20De%20Villoria%2C%20R.%2C%20G%26%23xF3%3Bmez-Fatou%2C%20M.%20A.%2C%20Ania%2C%20F.%2C%20%26amp%3B%20Flores%2C%20A.%20%282019%29.%20Nanoindentation%20mapping%20of%20multiscale%20composites%20of%20graphene-reinforced%20polypropylene%20and%20carbon%20fibres.%20%26lt%3Bi%26gt%3BComposites%20Science%20and%20Technology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B169%26lt%3B%5C%2Fi%26gt%3B%2C%20151%26%23×2013%3B157.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.compscitech.2018.11.009%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.compscitech.2018.11.009%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Nanoindentation%20mapping%20of%20multiscale%20composites%20of%20graphene-reinforced%20polypropylene%20and%20carbon%20fibres%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patricia%22%2C%22lastName%22%3A%22Enrique-Jimenez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Susana%22%2C%22lastName%22%3A%22Quiles-D%5Cu00edaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Horacio%20J.%22%2C%22lastName%22%3A%22Salavagione%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juan%20Pedro%22%2C%22lastName%22%3A%22Fern%5Cu00e1ndez-Bl%5Cu00e1zquez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Miguel%20A.%22%2C%22lastName%22%3A%22Moncl%5Cu00fas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberto%22%2C%22lastName%22%3A%22Guzman%20De%20Villoria%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mari%5Cu00e1n%20A.%22%2C%22lastName%22%3A%22G%5Cu00f3mez-Fatou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fernando%22%2C%22lastName%22%3A%22Ania%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Araceli%22%2C%22lastName%22%3A%22Flores%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2201%5C%2F2019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.compscitech.2018.11.009%22%2C%22ISSN%22%3A%2202663538%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0266353818305372%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A09Z%22%7D%7D%2C%7B%22key%22%3A%22NJ62RIW7%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22He%20et%20al.%22%2C%22parsedDate%22%3A%222019-10-14%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BHe%2C%20C.%20Z.%2C%20Longman%2C%20A.%2C%20P%26%23xE9%3Brez-Hern%26%23xE1%3Bndez%2C%20J.%20A.%2C%20De%20Marco%2C%20M.%2C%20Salgado%2C%20C.%2C%20Zeraouli%2C%20G.%2C%20Gatti%2C%20G.%2C%20Roso%2C%20L.%2C%20Fedosejevs%2C%20R.%2C%20%26amp%3B%20Hill%2C%20W.%20T.%20%282019%29.%20Towards%20an%20in%20situ%2C%20full-power%20gauge%20of%20the%20focal-volume%20intensity%20of%20petawatt-class%20lasers.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B27%26lt%3B%5C%2Fi%26gt%3B%2821%29%2C%2030020.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.27.030020%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.27.030020%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Towards%20an%20in%20situ%2C%20full-power%20gauge%20of%20the%20focal-volume%20intensity%20of%20petawatt-class%20lasers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20Z.%22%2C%22lastName%22%3A%22He%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Longman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20A.%22%2C%22lastName%22%3A%22P%5Cu00e9rez-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22De%20Marco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Salgado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Zeraouli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Gatti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Roso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Fedosejevs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%20T.%22%2C%22lastName%22%3A%22Hill%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-10-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.27.030020%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-27-21-30020%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A23Z%22%7D%7D%2C%7B%22key%22%3A%22WRW4B6UC%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Henares%20et%20al.%22%2C%22parsedDate%22%3A%222019-06-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BHenares%2C%20J.%20L.%2C%20Puyuelo-Valdes%2C%20P.%2C%20Hannachi%2C%20F.%2C%20Ceccotti%2C%20T.%2C%20Ehret%2C%20M.%2C%20Gobet%2C%20F.%2C%20Lancia%2C%20L.%2C%20Marqu%26%23xE8%3Bs%2C%20J.-R.%2C%20Santos%2C%20J.%20J.%2C%20Versteegen%2C%20M.%2C%20%26amp%3B%20Tarisien%2C%20M.%20%282019%29.%20Development%20of%20gas%20jet%20targets%20for%20laser-plasma%20experiments%20at%20near-critical%20density.%20%26lt%3Bi%26gt%3BReview%20of%20Scientific%20Instruments%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B90%26lt%3B%5C%2Fi%26gt%3B%286%29%2C%20063302.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5093613%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5093613%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Development%20of%20gas%20jet%20targets%20for%20laser-plasma%20experiments%20at%20near-critical%20density%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20L.%22%2C%22lastName%22%3A%22Henares%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Puyuelo-Valdes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Hannachi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Ceccotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Ehret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Gobet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Lancia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-R.%22%2C%22lastName%22%3A%22Marqu%5Cu00e8s%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20J.%22%2C%22lastName%22%3A%22Santos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Versteegen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Tarisien%22%7D%5D%2C%22abstractNote%22%3A%22Computational%20fluid%20dynamics%20simulations%20are%20performed%20to%20design%20gas%20nozzles%2C%20associated%20with%20a%201000%20bars%20backing%20pressure%20system%2C%20capable%20of%20generating%20supersonic%20gas%20jet%20targets%20with%20densities%20close%20to%20the%20critical%20density%20for%201053%20nm%20laser%20radiation%20%281021%20cm%5Cu22123%29.%20Such%20targets%20should%20be%20suitable%20for%20laser-driven%20ion%20acceleration%20at%20a%20high%20repetition%20rate.%20The%20simulation%20results%20are%20compared%20to%20the%20density%20profiles%20measured%20by%20interferometry%2C%20and%20characterization%20of%20the%20gas%20jet%20dynamics%20is%20performed%20using%20strioscopy.%20Proton%20beams%20with%20maximum%20energies%20up%20to%202%20MeV%20have%20been%20produced%20from%20diatomic%20hydrogen%20gas%20jet%20targets%20in%20a%20first%20experiment.%22%2C%22date%22%3A%222019-06-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5093613%22%2C%22ISSN%22%3A%220034-6748%2C%201089-7623%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Frsi%5C%2Farticle%5C%2F90%5C%2F6%5C%2F063302%5C%2F360294%5C%2FDevelopment-of-gas-jet-targets-for-laser-plasma%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A19Z%22%7D%7D%2C%7B%22key%22%3A%22LZPKWFH5%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Herrera%20Diez%20et%20al.%22%2C%22parsedDate%22%3A%222019-09-04%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BHerrera%20Diez%2C%20L.%2C%20Liu%2C%20Y.%20T.%2C%20Gilbert%2C%20D.%20A.%2C%20Belmeguenai%2C%20M.%2C%20Vogel%2C%20J.%2C%20Pizzini%2C%20S.%2C%20Martinez%2C%20E.%2C%20Lamperti%2C%20A.%2C%20Mohammedi%2C%20J.%20B.%2C%20Laborieux%2C%20A.%2C%20Roussign%26%23xE9%3B%2C%20Y.%2C%20Grutter%2C%20A.%20J.%2C%20Arenholtz%2C%20E.%2C%20Quarterman%2C%20P.%2C%20Maranville%2C%20B.%2C%20Ono%2C%20S.%2C%20Hadri%2C%20M.%20S.%20E.%2C%20Tolley%2C%20R.%2C%20Fullerton%2C%20E.%20E.%2C%20%26%23×2026%3B%20Ravelosona%2C%20D.%20%282019%29.%20Nonvolatile%20Ionic%20Modification%20of%20the%20Dzyaloshinskii-Moriya%20Interaction.%20%26lt%3Bi%26gt%3BPhysical%20Review%20Applied%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B12%26lt%3B%5C%2Fi%26gt%3B%283%29%2C%20034005.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.12.034005%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.12.034005%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Nonvolatile%20Ionic%20Modification%20of%20the%20Dzyaloshinskii-Moriya%20Interaction%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Herrera%20Diez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.T.%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.A.%22%2C%22lastName%22%3A%22Gilbert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Belmeguenai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Vogel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Pizzini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Martinez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Lamperti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.B.%22%2C%22lastName%22%3A%22Mohammedi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Laborieux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Roussign%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.J.%22%2C%22lastName%22%3A%22Grutter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Arenholtz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Quarterman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Maranville%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Ono%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20Salah%20El%22%2C%22lastName%22%3A%22Hadri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Tolley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.E.%22%2C%22lastName%22%3A%22Fullerton%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Sanchez-Tejerina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Stashkevich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.M.%22%2C%22lastName%22%3A%22Ch%5Cu00e9rif%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.D.%22%2C%22lastName%22%3A%22Kent%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Querlioz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Langer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Ocker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Ravelosona%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-9-4%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.12.034005%22%2C%22ISSN%22%3A%222331-7019%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevApplied.12.034005%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A24%3A35Z%22%7D%7D%2C%7B%22key%22%3A%22RW9UDUE4%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hrabec%20et%20al.%22%2C%22parsedDate%22%3A%222019-06-07%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BHrabec%2C%20A.%2C%20Shahbazi%2C%20K.%2C%20Moore%2C%20T.%20A.%2C%20Martinez%2C%20E.%2C%20%26amp%3B%20Marrows%2C%20C.%20H.%20%282019%29.%20Tuning%20spin%26%23×2013%3Borbit%20torques%20at%20magnetic%20domain%20walls%20in%20epitaxial%20Pt%5C%2FCo%5C%2FPt%20%26lt%3Bsub%26gt%3B%201%26%23×2212%3B%20%26lt%3Bi%26gt%3Bx%26lt%3B%5C%2Fi%26gt%3B%20%26lt%3B%5C%2Fsub%26gt%3B%20Au%20%26lt%3Bsub%26gt%3B%20%26lt%3Bi%26gt%3Bx%26lt%3B%5C%2Fi%26gt%3B%20%26lt%3B%5C%2Fsub%26gt%3B%20trilayers.%20%26lt%3Bi%26gt%3BNanotechnology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B30%26lt%3B%5C%2Fi%26gt%3B%2823%29%2C%20234003.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6528%5C%2Fab087b%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6528%5C%2Fab087b%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tuning%20spin%5Cu2013orbit%20torques%20at%20magnetic%20domain%20walls%20in%20epitaxial%20Pt%5C%2FCo%5C%2FPt%20%3Csub%3E%201%5Cu2212%20%3Ci%3Ex%3C%5C%2Fi%3E%20%3C%5C%2Fsub%3E%20Au%20%3Csub%3E%20%3Ci%3Ex%3C%5C%2Fi%3E%20%3C%5C%2Fsub%3E%20trilayers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ale%5Cu0161%22%2C%22lastName%22%3A%22Hrabec%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kowsar%22%2C%22lastName%22%3A%22Shahbazi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20A%22%2C%22lastName%22%3A%22Moore%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Martinez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%20H%22%2C%22lastName%22%3A%22Marrows%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-06-07%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6528%5C%2Fab087b%22%2C%22ISSN%22%3A%220957-4484%2C%201361-6528%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6528%5C%2Fab087b%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A18Z%22%7D%7D%2C%7B%22key%22%3A%223PB5Y5M4%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Huang%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BHuang%2C%20P.-C.%2C%20Hernandez-Garcia%2C%20C.%2C%20Huang%2C%20J.-T.%2C%20Huang%2C%20P.-Y.%2C%20Rego%2C%20L.%2C%20Lu%2C%20C.-H.%2C%20Yang%2C%20S.-D.%2C%20Plaja%2C%20L.%2C%20Kung%2C%20A.%20H.%2C%20%26amp%3B%20Chen%2C%20M.-C.%20%282019%29.%20Realization%20of%20Polarization%20Control%20in%20High-Order%20Harmonic%20Generation.%20%26lt%3Bi%26gt%3BIEEE%20Journal%20of%20Selected%20Topics%20in%20Quantum%20Electronics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B25%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%201%26%23×2013%3B12.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FJSTQE.2019.2919777%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FJSTQE.2019.2919777%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Realization%20of%20Polarization%20Control%20in%20High-Order%20Harmonic%20Generation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pei-Chi%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hernandez-Garcia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jen-Ting%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Po-Yao%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%22%2C%22lastName%22%3A%22Rego%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chih-Hsuan%22%2C%22lastName%22%3A%22Lu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shang-Da%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andy%20H.%22%2C%22lastName%22%3A%22Kung%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ming-Chang%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%227%5C%2F2019%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FJSTQE.2019.2919777%22%2C%22ISSN%22%3A%221077-260X%2C%201558-4542%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F8725563%5C%2F%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A35Z%22%7D%7D%2C%7B%22key%22%3A%222GEBNJGX%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Huault%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BHuault%2C%20M.%2C%20De%20Luis%2C%20D.%2C%20Api%26%23xF1%3Baniz%2C%20J.%20I.%2C%20De%20Marco%2C%20M.%2C%20Salgado%2C%20C.%2C%20Gordillo%2C%20N.%2C%20Guti%26%23xE9%3Brrez%20Neira%2C%20C.%2C%20P%26%23xE9%3Brez-Hern%26%23xE1%3Bndez%2C%20J.%20A.%2C%20Fedosejevs%2C%20R.%2C%20Gatti%2C%20G.%2C%20Roso%2C%20L.%2C%20%26amp%3B%20Volpe%2C%20L.%20%282019%29.%20A%202D%20scintillator-based%20proton%20detector%20for%20high%20repetition%20rate%20experiments.%20%26lt%3Bi%26gt%3BHigh%20Power%20Laser%20Science%20and%20Engineering%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B7%26lt%3B%5C%2Fi%26gt%3B%2C%20e60.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fhpl.2019.43%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fhpl.2019.43%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%202D%20scintillator-based%20proton%20detector%20for%20high%20repetition%20rate%20experiments%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Huault%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22De%20Luis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20I.%22%2C%22lastName%22%3A%22Api%5Cu00f1aniz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22De%20Marco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Salgado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Gordillo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Guti%5Cu00e9rrez%20Neira%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20A.%22%2C%22lastName%22%3A%22P%5Cu00e9rez-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Fedosejevs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Gatti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Roso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Volpe%22%7D%5D%2C%22abstractNote%22%3A%22We%20present%20a%20scintillator-based%20detector%20able%20to%20measure%20the%20proton%20energy%20and%20the%20spatial%20distribution%20with%20a%20relatively%20simple%20design.%20It%20has%20been%20designed%20and%20built%20at%20the%20Spanish%20Center%20for%20Pulsed%20Lasers%20%28CLPU%29%20in%20Salamanca%20and%20tested%20in%20the%20proton%20accelerator%20at%20the%20Centro%20de%20Micro-An%5Cu00e1lisis%20de%20Materiales%20%28CMAM%29%20in%20Madrid.%20The%20detector%20is%20capable%20of%20being%20set%20in%20the%20high%20repetition%20rate%20%28HRR%29%20mode%20and%20reproduces%20the%20performance%20of%20the%20radiochromic%20film%20detector.%20It%20represents%20a%20new%20class%20of%20online%20detectors%20for%20laser%5Cu2013plasma%20physics%20experiments%20in%20the%20newly%20emerging%20high%20power%20laser%20laboratories%20working%20at%20HRR.%22%2C%22date%22%3A%222019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1017%5C%2Fhpl.2019.43%22%2C%22ISSN%22%3A%222095-4719%2C%202052-3289%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.cambridge.org%5C%2Fcore%5C%2Fproduct%5C%2Fidentifier%5C%2FS2095471919000434%5C%2Ftype%5C%2Fjournal_article%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A33Z%22%7D%7D%2C%7B%22key%22%3A%22SK22Z6CR%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Jessen%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BJessen%2C%20B.%20S.%2C%20Gammelgaard%2C%20L.%2C%20Thomsen%2C%20M.%20R.%2C%20Mackenzie%2C%20D.%20M.%20A.%2C%20Thomsen%2C%20J.%20D.%2C%20Caridad%2C%20J.%20M.%2C%20Duegaard%2C%20E.%2C%20Watanabe%2C%20K.%2C%20Taniguchi%2C%20T.%2C%20Booth%2C%20T.%20J.%2C%20Pedersen%2C%20T.%20G.%2C%20Jauho%2C%20A.-P.%2C%20%26amp%3B%20B%26%23xF8%3Bggild%2C%20P.%20%282019%29.%20Lithographic%20band%20structure%20engineering%20of%20graphene.%20%26lt%3Bi%26gt%3BNature%20Nanotechnology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B14%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20340%26%23×2013%3B346.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41565-019-0376-3%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41565-019-0376-3%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Lithographic%20band%20structure%20engineering%20of%20graphene%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bjarke%20S.%22%2C%22lastName%22%3A%22Jessen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lene%22%2C%22lastName%22%3A%22Gammelgaard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Morten%20R.%22%2C%22lastName%22%3A%22Thomsen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20M.%20A.%22%2C%22lastName%22%3A%22Mackenzie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joachim%20D.%22%2C%22lastName%22%3A%22Thomsen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M.%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%22%2C%22lastName%22%3A%22Duegaard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kenji%22%2C%22lastName%22%3A%22Watanabe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Takashi%22%2C%22lastName%22%3A%22Taniguchi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20J.%22%2C%22lastName%22%3A%22Booth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20G.%22%2C%22lastName%22%3A%22Pedersen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antti-Pekka%22%2C%22lastName%22%3A%22Jauho%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22B%5Cu00f8ggild%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%224%5C%2F2019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41565-019-0376-3%22%2C%22ISSN%22%3A%221748-3387%2C%201748-3395%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41565-019-0376-3%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A24%3A25Z%22%7D%7D%2C%7B%22key%22%3A%22JUFH2JWH%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Jia%20et%20al.%22%2C%22parsedDate%22%3A%222019-10-14%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BJia%2C%20Y.%2C%20He%2C%20R.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Liu%2C%20H.%2C%20%26amp%3B%20Chen%2C%20F.%20%282019%29.%20Femtosecond%20laser%20direct%20writing%20of%20few-mode%20depressed-cladding%20waveguide%20lasers.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B27%26lt%3B%5C%2Fi%26gt%3B%2821%29%2C%2030941.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.27.030941%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.27.030941%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Femtosecond%20laser%20direct%20writing%20of%20few-mode%20depressed-cladding%20waveguide%20lasers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuechen%22%2C%22lastName%22%3A%22Jia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ruiyun%22%2C%22lastName%22%3A%22He%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hongliang%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-10-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.27.030941%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-27-21-30941%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22MKGHCDNP%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kifle%20et%20al.%22%2C%22parsedDate%22%3A%222019-04-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BKifle%2C%20E.%2C%20Loiko%2C%20P.%2C%20Romero%2C%20C.%2C%20Rodr%26%23xED%3Bguez%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%2C%20R%26%23xF3%3Bdenas%2C%20A.%2C%20Zakharov%2C%20V.%2C%20Veniaminov%2C%20A.%2C%20Aguil%26%23xF3%3B%2C%20M.%2C%20D%26%23xED%3Baz%2C%20F.%2C%20Griebner%2C%20U.%2C%20Petrov%2C%20V.%2C%20%26amp%3B%20Mateos%2C%20X.%20%282019%29.%20Femtosecond-laser-written%20Ho%3AKGd%28WO%20%26lt%3Bsub%26gt%3B4%26lt%3B%5C%2Fsub%26gt%3B%20%29%20%26lt%3Bsub%26gt%3B2%26lt%3B%5C%2Fsub%26gt%3B%20waveguide%20laser%20at%2021%20%26%23x3BC%3Bm.%20%26lt%3Bi%26gt%3BOptics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B44%26lt%3B%5C%2Fi%26gt%3B%287%29%2C%201738.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.44.001738%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.44.001738%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Femtosecond-laser-written%20Ho%3AKGd%28WO%20%3Csub%3E4%3C%5C%2Fsub%3E%20%29%20%3Csub%3E2%3C%5C%2Fsub%3E%20waveguide%20laser%20at%2021%20%5Cu03bcm%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esrom%22%2C%22lastName%22%3A%22Kifle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pavel%22%2C%22lastName%22%3A%22Loiko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%22%2C%22lastName%22%3A%22Rodr%5Cu00edguez%20V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Air%5Cu00e1n%22%2C%22lastName%22%3A%22R%5Cu00f3denas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Viktor%22%2C%22lastName%22%3A%22Zakharov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrey%22%2C%22lastName%22%3A%22Veniaminov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Magdalena%22%2C%22lastName%22%3A%22Aguil%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesc%22%2C%22lastName%22%3A%22D%5Cu00edaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Uwe%22%2C%22lastName%22%3A%22Griebner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valentin%22%2C%22lastName%22%3A%22Petrov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Mateos%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-04-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOL.44.001738%22%2C%22ISSN%22%3A%220146-9592%2C%201539-4794%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dol-44-7-1738%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A31Z%22%7D%7D%2C%7B%22key%22%3A%22M7IXN8UW%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kifle%20et%20al.%22%2C%22parsedDate%22%3A%222019-03-18%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BKifle%2C%20E.%2C%20Loiko%2C%20P.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Romero%2C%20C.%2C%20R%26%23xF3%3Bdenas%2C%20A.%2C%20Zakharov%2C%20V.%2C%20Veniaminov%2C%20A.%2C%20Yu%2C%20H.%2C%20Zhang%2C%20H.%2C%20Chen%2C%20Y.%2C%20Aguil%26%23xF3%3B%2C%20M.%2C%20D%26%23xED%3Baz%2C%20F.%2C%20Griebner%2C%20U.%2C%20Petrov%2C%20V.%2C%20%26amp%3B%20Mateos%2C%20X.%20%282019%29.%20Fs-laser-written%20thulium%20waveguide%20lasers%20Q-switched%20by%20graphene%20and%20MoS%20%26lt%3Bsub%26gt%3B2%26lt%3B%5C%2Fsub%26gt%3B.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B27%26lt%3B%5C%2Fi%26gt%3B%286%29%2C%208745.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.27.008745%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.27.008745%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Fs-laser-written%20thulium%20waveguide%20lasers%20Q-switched%20by%20graphene%20and%20MoS%20%3Csub%3E2%3C%5C%2Fsub%3E%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esrom%22%2C%22lastName%22%3A%22Kifle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pavel%22%2C%22lastName%22%3A%22Loiko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20Rodr%5Cu00edguez%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Airan%22%2C%22lastName%22%3A%22R%5Cu00f3denas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Viktor%22%2C%22lastName%22%3A%22Zakharov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrey%22%2C%22lastName%22%3A%22Veniaminov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Haohai%22%2C%22lastName%22%3A%22Yu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Huaijin%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yanxue%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Magdalena%22%2C%22lastName%22%3A%22Aguil%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesc%22%2C%22lastName%22%3A%22D%5Cu00edaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Uwe%22%2C%22lastName%22%3A%22Griebner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valentin%22%2C%22lastName%22%3A%22Petrov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Mateos%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-03-18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.27.008745%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-27-6-8745%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A10Z%22%7D%7D%2C%7B%22key%22%3A%225ZJR9C3Q%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Li%20et%20al.%22%2C%22parsedDate%22%3A%222019-07-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BLi%2C%20L.%2C%20Nie%2C%20W.%2C%20Li%2C%20Z.%2C%20Zhang%2C%20B.%2C%20Wang%2C%20L.%2C%20Haro-Gonzalez%2C%20P.%2C%20Jaque%2C%20D.%2C%20Vazquez%20De%20Aldana%2C%20J.%20R.%2C%20%26amp%3B%20Chen%2C%20F.%20%282019%29.%20Femtosecond%20Laser%20Writing%20of%20Optical%20Waveguides%20by%20Self-Induced%20Multiple%20Refocusing%20in%20LiTaO%20%26lt%3Bsub%26gt%3B3%26lt%3B%5C%2Fsub%26gt%3B%20Crystal.%20%26lt%3Bi%26gt%3BJournal%20of%20Lightwave%20Technology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B37%26lt%3B%5C%2Fi%26gt%3B%2814%29%2C%203452%26%23×2013%3B3458.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FJLT.2019.2917076%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FJLT.2019.2917076%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Femtosecond%20Laser%20Writing%20of%20Optical%20Waveguides%20by%20Self-Induced%20Multiple%20Refocusing%20in%20LiTaO%20%3Csub%3E3%3C%5C%2Fsub%3E%20Crystal%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lingqi%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Weijie%22%2C%22lastName%22%3A%22Nie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ziqi%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bin%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lei%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patricia%22%2C%22lastName%22%3A%22Haro-Gonzalez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Jaque%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%22%2C%22lastName%22%3A%22Vazquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-7-15%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FJLT.2019.2917076%22%2C%22ISSN%22%3A%220733-8724%2C%201558-2213%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F8715503%5C%2F%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A38Z%22%7D%7D%2C%7B%22key%22%3A%22ZZ7ZVRX6%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Li%20et%20al.%22%2C%22parsedDate%22%3A%222019-12-09%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BLi%2C%20L.%2C%20Romero%2C%20C.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Wang%2C%20L.%2C%20Tan%2C%20Y.%2C%20%26amp%3B%20Chen%2C%20F.%20%282019%29.%20Efficient%20quasi-phase-matching%20in%20fan-out%20PPSLT%20crystal%20waveguides%20by%20femtosecond%20laser%20direct%20writing.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B27%26lt%3B%5C%2Fi%26gt%3B%2825%29%2C%2036875.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.27.036875%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.27.036875%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Efficient%20quasi-phase-matching%20in%20fan-out%20PPSLT%20crystal%20waveguides%20by%20femtosecond%20laser%20direct%20writing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lingqi%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lei%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yang%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-12-09%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.27.036875%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-27-25-36875%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A56Z%22%7D%7D%2C%7B%22key%22%3A%22Y4WH4329%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Liao%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BLiao%2C%20J.%2C%20Vallobra%2C%20P.%2C%20O%26%23×2019%3BBrien%2C%20L.%2C%20Atxitia%2C%20U.%2C%20Raposo%2C%20V.%2C%20Petit%2C%20D.%2C%20Vemulkar%2C%20T.%2C%20Malinowski%2C%20G.%2C%20Hehn%2C%20M.%2C%20Mart%26%23xED%3Bnez%2C%20E.%2C%20Mangin%2C%20S.%2C%20%26amp%3B%20Cowburn%2C%20R.%20P.%20%282019%29.%20Controlling%20All%26%23×2010%3BOptical%20Helicity%26%23×2010%3BDependent%20Switching%20in%20Engineered%20Rare%26%23×2010%3BEarth%20Free%20Synthetic%20Ferrimagnets.%20%26lt%3Bi%26gt%3BAdvanced%20Science%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B6%26lt%3B%5C%2Fi%26gt%3B%2824%29%2C%201901876.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadvs.201901876%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadvs.201901876%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Controlling%20All%5Cu2010Optical%20Helicity%5Cu2010Dependent%20Switching%20in%20Engineered%20Rare%5Cu2010Earth%20Free%20Synthetic%20Ferrimagnets%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jung%5Cu2010Wei%22%2C%22lastName%22%3A%22Liao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pierre%22%2C%22lastName%22%3A%22Vallobra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Liam%22%2C%22lastName%22%3A%22O%27Brien%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Unai%22%2C%22lastName%22%3A%22Atxitia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Doroth%5Cu00e9e%22%2C%22lastName%22%3A%22Petit%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tarun%22%2C%22lastName%22%3A%22Vemulkar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gregory%22%2C%22lastName%22%3A%22Malinowski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michel%22%2C%22lastName%22%3A%22Hehn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Mart%5Cu00ednez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phane%22%2C%22lastName%22%3A%22Mangin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Russell%20P.%22%2C%22lastName%22%3A%22Cowburn%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20All%5Cu2010optical%20helicity%5Cu2010dependent%20switching%20in%20ferromagnetic%20layers%20has%20revealed%20an%20unprecedented%20route%20to%20manipulate%20magnetic%20configurations%20by%20circularly%20polarized%20femtosecond%20laser%20pulses.%20In%20this%20work%2C%20rare%5Cu2010earth%20free%20synthetic%20ferrimagnetic%20heterostructures%20made%20from%20two%20antiferromagnetically%20exchange%20coupled%20ferromagnetic%20layers%20are%20studied.%20Experimental%20results%2C%20supported%20by%20numerical%20simulations%2C%20show%20that%20the%20designed%20structures%20enable%20all%5Cu2010optical%20switching%20which%20is%20controlled%2C%20not%20only%20by%20light%20helicity%2C%20but%20also%20by%20the%20relative%20Curie%20temperature%20of%20each%20ferromagnetic%20layer.%20Indeed%2C%20through%20the%20antiferromagnetic%20exchange%20coupling%2C%20the%20layer%20with%20the%20larger%20Curie%20temperature%20determines%20the%20final%20orientation%20of%20the%20other%20layer%20and%20so%20the%20synthetic%20ferrimagnet.%20For%20similar%20Curie%20temperatures%2C%20helicity%5Cu2010independent%20back%20switching%20is%20observed%20and%20the%20final%20magnetic%20configuration%20is%20solely%20determined%20by%20the%20initial%20magnetic%20state.%20This%20demonstration%20of%20electrically%5Cu2010detected%2C%20optical%20control%20of%20engineered%20rare%5Cu2010earth%20free%20heterostructures%20opens%20a%20novel%20route%20toward%20practical%20opto%5Cu2010spintronics.%22%2C%22date%22%3A%2212%5C%2F2019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadvs.201901876%22%2C%22ISSN%22%3A%222198-3844%2C%202198-3844%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fadvs.201901876%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A49Z%22%7D%7D%2C%7B%22key%22%3A%225AKY6M95%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Liu%20et%20al.%22%2C%22parsedDate%22%3A%222019-03-25%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BLiu%2C%20Q.%2C%20Castillo-Rodr%26%23xED%3Bguez%2C%20M.%2C%20Galisteo%2C%20A.%2C%20Guzm%26%23xE1%3Bn%20De%20Villoria%2C%20R.%2C%20%26amp%3B%20Torralba%2C%20J.%20%282019%29.%20Wear%20Behavior%20of%20Copper%26%23×2013%3BGraphite%20Composites%20Processed%20by%20Field-Assisted%20Hot%20Pressing.%20%26lt%3Bi%26gt%3BJournal%20of%20Composites%20Science%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B3%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%2029.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fjcs3010029%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fjcs3010029%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Wear%20Behavior%20of%20Copper%5Cu2013Graphite%20Composites%20Processed%20by%20Field-Assisted%20Hot%20Pressing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qian%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Miguel%22%2C%22lastName%22%3A%22Castillo-Rodr%5Cu00edguez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Galisteo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberto%22%2C%22lastName%22%3A%22Guzm%5Cu00e1n%20De%20Villoria%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%22%2C%22lastName%22%3A%22Torralba%22%7D%5D%2C%22abstractNote%22%3A%22Copper%5Cu2013graphite%20composites%20with%200%5Cu20134%20wt%20%25%20graphite%20were%20fabricated%20by%20field-assisted%20hot%20pressing%20with%20the%20aim%20of%20studying%20the%20effect%20of%20graphite%20content%20on%20microhardness%20and%20tribological%20properties.%20Experimental%20results%20reveal%20that%20hardness%20decreases%20with%20the%20graphite%20content.%20Wear%20testing%20was%20carried%20out%20using%20a%20ball-on-disc%20tribometer%20with%20a%20normal%20load%20of%208%20N%20at%20a%20constant%20sliding%20velocity%20of%200.16%20m%5C%2Fs.%20The%20friction%20coefficient%20of%20composites%20decreases%20significantly%20from%200.92%20to%200.29%20with%20the%20increase%20in%20graphite%20content%2C%20resulting%20in%20a%20friction%20coefficient%20for%20the%204%20wt%20%25%20graphite%20composite%20that%20is%2068.5%25%20lower%20than%20pure%20copper.%20The%20wear%20rate%20first%20increases%20when%20the%20graphite%20content%20is%201%20wt%20%25%3B%20it%20then%20decreases%20as%20the%20graphite%20content%20is%20further%20increased%20until%20a%20certain%20critical%20threshold%20concentration%20of%20graphite%2C%20which%20seems%20to%20be%20around%203%20wt%20%25.%20Plastic%20deformation%20in%20conjunction%20with%20some%20oxidative%20wear%20is%20the%20wear%20mechanism%20observed%20in%20pure%20copper%2C%20while%20abrasive%20wear%20is%20the%20main%20wear%20mechanism%20in%20copper%5Cu2013graphite%20composites.%22%2C%22date%22%3A%222019-03-25%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fjcs3010029%22%2C%22ISSN%22%3A%222504-477X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F2504-477X%5C%2F3%5C%2F1%5C%2F29%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A24Z%22%7D%7D%2C%7B%22key%22%3A%22SJ3ZWU9S%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22L%5Cu00f3pez-Ripa%20et%20al.%22%2C%22parsedDate%22%3A%222019-04-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BL%26%23xF3%3Bpez-Ripa%2C%20M.%2C%20Jarabo%2C%20S.%2C%20%26amp%3B%20Salgado-Remacha%2C%20F.%20J.%20%282019%29.%20Near-infrared%20supercontinuum%20source%20by%20intracavity%20silica-based%20highly-nonlinear%20fiber.%20%26lt%3Bi%26gt%3BOptics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B44%26lt%3B%5C%2Fi%26gt%3B%288%29%2C%202016.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.44.002016%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.44.002016%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Near-infrared%20supercontinuum%20source%20by%20intracavity%20silica-based%20highly-nonlinear%20fiber%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Miguel%22%2C%22lastName%22%3A%22L%5Cu00f3pez-Ripa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebasti%5Cu00e1n%22%2C%22lastName%22%3A%22Jarabo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francisco%20J.%22%2C%22lastName%22%3A%22Salgado-Remacha%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-04-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOL.44.002016%22%2C%22ISSN%22%3A%220146-9592%2C%201539-4794%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dol-44-8-2016%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A26Z%22%7D%7D%2C%7B%22key%22%3A%226GPYY9JJ%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Luis%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BLuis%2C%20R.%20F.%2C%20Raposo%2C%20V.%2C%20Alejos%2C%20O.%2C%20%26amp%3B%20Martinez%2C%20E.%20%282019%29.%20Current-Driven%20Skyrmion%20Dynamics%20Along%20Curved%20Tracks.%20%26lt%3Bi%26gt%3BIEEE%20Transactions%20on%20Magnetics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B55%26lt%3B%5C%2Fi%26gt%3B%287%29%2C%201%26%23×2013%3B8.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMAG.2019.2898011%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMAG.2019.2898011%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Current-Driven%20Skyrmion%20Dynamics%20Along%20Curved%20Tracks%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ricardo%20Francisco%22%2C%22lastName%22%3A%22Luis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oscar%22%2C%22lastName%22%3A%22Alejos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Martinez%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%227%5C%2F2019%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FTMAG.2019.2898011%22%2C%22ISSN%22%3A%220018-9464%2C%201941-0069%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F8651303%5C%2F%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A07Z%22%7D%7D%2C%7B%22key%22%3A%223EBFM92F%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Malko%20et%20al.%22%2C%22parsedDate%22%3A%222019-10-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BMalko%2C%20S.%2C%20Vaisseau%2C%20X.%2C%20Perez%2C%20F.%2C%20Batani%2C%20D.%2C%20Curcio%2C%20A.%2C%20Ehret%2C%20M.%2C%20Honrubia%2C%20J.%2C%20Jakubowska%2C%20K.%2C%20Morace%2C%20A.%2C%20Santos%2C%20J.%20J.%2C%20%26amp%3B%20Volpe%2C%20L.%20%282019%29.%20Enhanced%20relativistic-electron%20beam%20collimation%20using%20two%20consecutive%20laser%20pulses.%20%26lt%3Bi%26gt%3BScientific%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B9%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%2014061.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-019-50401-y%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-019-50401-y%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Enhanced%20relativistic-electron%20beam%20collimation%20using%20two%20consecutive%20laser%20pulses%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophia%22%2C%22lastName%22%3A%22Malko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Vaisseau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Frederic%22%2C%22lastName%22%3A%22Perez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dimitri%22%2C%22lastName%22%3A%22Batani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessandro%22%2C%22lastName%22%3A%22Curcio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Ehret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%22%2C%22lastName%22%3A%22Honrubia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katarzyna%22%2C%22lastName%22%3A%22Jakubowska%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessio%22%2C%22lastName%22%3A%22Morace%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jo%5Cu00e3o%20Jorge%22%2C%22lastName%22%3A%22Santos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Volpe%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20double%20laser%20pulse%20approach%20to%20relativistic%20electron%20beam%20%28REB%29%20collimation%20in%20solid%20targets%20has%20been%20investigated%20at%20the%20LULI-ELFIE%20facility.%20In%20this%20scheme%20two%20collinear%20laser%20pulses%20are%20focused%20onto%20a%20solid%20target%20with%20a%20given%20intensity%20ratio%20and%20time%20delay%20to%20generate%20REBs.%20The%20magnetic%20field%20generated%20by%20the%20first%20laser-driven%20REB%20is%20used%20to%20guide%20the%20REB%20generated%20by%20a%20second%20delayed%20laser%20pulse.%20We%20show%20how%20electron%20beam%20collimation%20can%20be%20controlled%20by%20properly%20adjusting%20the%20ratio%20of%20focus%20size%20and%20the%20delay%20time%20between%20the%20two%20pulses.%20We%20found%20that%20the%20maximum%20of%20electron%20beam%20collimation%20is%20clearly%20dependent%20on%20the%20laser%20focal%20spot%20size%20ratio%20and%20related%20to%20the%20magnetic%20field%20dynamics.%20Cu-K%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03b1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20CTR%20imaging%20diagnostics%20were%20implemented%20to%20evaluate%20the%20collimation%20effects%20on%20the%20respectively%20low%20energy%20%28%5Cu2264100%5Cu2009keV%29%20and%20high%20energy%20%28%5Cu2265MeV%29%20components%20of%20the%20REB.%22%2C%22date%22%3A%222019-10-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-019-50401-y%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-019-50401-y%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A35Z%22%7D%7D%2C%7B%22key%22%3A%2297QDD3KB%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Miranda%20et%20al.%22%2C%22parsedDate%22%3A%222019-01-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BMiranda%2C%20M.%2C%20Silva%2C%20F.%2C%20Neori%26%23x10D%3Bi%26%23×107%3B%2C%20L.%2C%20Guo%2C%20C.%2C%20Pervak%2C%20V.%2C%20Canhota%2C%20M.%2C%20Silva%2C%20A.%20S.%2C%20Sola%2C%20%26%23xCD%3B.%20J.%2C%20Romero%2C%20R.%2C%20Guerreiro%2C%20P.%20T.%2C%20L%26%23×2019%3BHuillier%2C%20A.%2C%20Arnold%2C%20C.%20L.%2C%20%26amp%3B%20Crespo%2C%20H.%20%282019%29.%20All-optical%20measurement%20of%20the%20complete%20waveform%20of%20octave-spanning%20ultrashort%20light%20pulses.%20%26lt%3Bi%26gt%3BOptics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B44%26lt%3B%5C%2Fi%26gt%3B%282%29%2C%20191.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.44.000191%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.44.000191%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22All-optical%20measurement%20of%20the%20complete%20waveform%20of%20octave-spanning%20ultrashort%20light%20pulses%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Miguel%22%2C%22lastName%22%3A%22Miranda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francisco%22%2C%22lastName%22%3A%22Silva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lana%22%2C%22lastName%22%3A%22Neori%5Cu010di%5Cu0107%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chen%22%2C%22lastName%22%3A%22Guo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vladimir%22%2C%22lastName%22%3A%22Pervak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Miguel%22%2C%22lastName%22%3A%22Canhota%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ana%20S.%22%2C%22lastName%22%3A%22Silva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rosa%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paulo%20T.%22%2C%22lastName%22%3A%22Guerreiro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anne%22%2C%22lastName%22%3A%22L%5Cu2019Huillier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cord%20L.%22%2C%22lastName%22%3A%22Arnold%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Helder%22%2C%22lastName%22%3A%22Crespo%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-01-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOL.44.000191%22%2C%22ISSN%22%3A%220146-9592%2C%201539-4794%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dol-44-2-191%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22PG2N3JNG%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Pasley%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BPasley%2C%20J.%2C%20Andrianaki%2C%20G.%2C%20Baroutsos%2C%20A.%2C%20Batani%2C%20D.%2C%20Benis%2C%20E.%20P.%2C%20Borghesi%2C%20M.%2C%20Clark%2C%20E.%2C%20Cook%2C%20D.%2C%20D%26%23×2019%3BHumieres%2C%20E.%2C%20Dimitriou%2C%20V.%2C%20Dromey%2C%20B.%2C%20Ehret%2C%20M.%2C%20Fitilis%2C%20I.%2C%20Grigoriadis%2C%20A.%2C%20Kar%2C%20S.%2C%20Kaselouris%2C%20E.%2C%20Klimo%2C%20O.%2C%20Koenig%2C%20M.%2C%20Kosma%2C%20K.%2C%20%26%23×2026%3B%20Tatarakis%2C%20M.%20%282019%29.%20Innovative%20Education%20and%20Training%20in%20high%20power%20laser%20plasmas%20%28PowerLaPs%29%20for%20plasma%20physics%2C%20high%20power%20laser%26%23×2013%3Bmatter%20interactions%20and%20high%20energy%20density%20physics%20%26%23×2013%3B%20theory%20and%20experiments.%20%26lt%3Bi%26gt%3BHigh%20Power%20Laser%20Science%20and%20Engineering%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B7%26lt%3B%5C%2Fi%26gt%3B%2C%20e23.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fhpl.2019.7%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fhpl.2019.7%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Innovative%20Education%20and%20Training%20in%20high%20power%20laser%20plasmas%20%28PowerLaPs%29%20for%20plasma%20physics%2C%20high%20power%20laser%5Cu2013matter%20interactions%20and%20high%20energy%20density%20physics%20%5Cu2013%20theory%20and%20experiments%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%22%2C%22lastName%22%3A%22Pasley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Georgia%22%2C%22lastName%22%3A%22Andrianaki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Baroutsos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dimitri%22%2C%22lastName%22%3A%22Batani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanouil%20P.%22%2C%22lastName%22%3A%22Benis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marco%22%2C%22lastName%22%3A%22Borghesi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eugene%22%2C%22lastName%22%3A%22Clark%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Donna%22%2C%22lastName%22%3A%22Cook%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22D%5Cu2019Humieres%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vasilios%22%2C%22lastName%22%3A%22Dimitriou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brendan%22%2C%22lastName%22%3A%22Dromey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Ehret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ioannis%22%2C%22lastName%22%3A%22Fitilis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anastasios%22%2C%22lastName%22%3A%22Grigoriadis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Satya%22%2C%22lastName%22%3A%22Kar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Evaggelos%22%2C%22lastName%22%3A%22Kaselouris%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ondrej%22%2C%22lastName%22%3A%22Klimo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michel%22%2C%22lastName%22%3A%22Koenig%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kyriaki%22%2C%22lastName%22%3A%22Kosma%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22George%22%2C%22lastName%22%3A%22Koundourakis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Milan%22%2C%22lastName%22%3A%22Kucharik%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aveen%22%2C%22lastName%22%3A%22Lavery%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jiri%22%2C%22lastName%22%3A%22Limpouch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yannis%22%2C%22lastName%22%3A%22Orphanos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nektarios%20A.%22%2C%22lastName%22%3A%22Papadogiannis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stelios%22%2C%22lastName%22%3A%22Petrakis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dave%22%2C%22lastName%22%3A%22Riley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maria%22%2C%22lastName%22%3A%22Serena%20Rivetta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%22%2C%22lastName%22%3A%22Tejada%20Pascual%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jo%5Cu00e3o%22%2C%22lastName%22%3A%22Jorge%20Santos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandros%22%2C%22lastName%22%3A%22Skoulakis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ioannis%22%2C%22lastName%22%3A%22Tazes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vladimir%22%2C%22lastName%22%3A%22Tikhonchuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jocelain%22%2C%22lastName%22%3A%22Trela%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Calliope%22%2C%22lastName%22%3A%22Tsitou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Volpe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Steven%22%2C%22lastName%22%3A%22White%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%22%2C%22lastName%22%3A%22Yeung%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Tatarakis%22%7D%5D%2C%22abstractNote%22%3A%22The%20Erasmus%20Plus%20programme%20%5Cu2018Innovative%20Education%20and%20Training%20in%20high%20power%20laser%20plasmas%5Cu2019%2C%20otherwise%20known%20as%20PowerLaPs%2C%20is%20described.%20The%20PowerLaPs%20programme%20employs%20an%20innovative%20paradigm%20in%20that%20it%20is%20a%20multi-centre%20programme%20where%20teaching%20takes%20place%20in%20five%20separate%20institutes%20with%20a%20range%20of%20different%20aims%20and%20styles%20of%20delivery.%20The%20%5Cu2018in%20class%5Cu2019%20time%20is%20limited%20to%20four%20weeks%20a%20year%2C%20and%20the%20programme%20spans%20two%20years.%20PowerLaPs%20aims%20to%20train%20students%20from%20across%20Europe%20in%20theoretical%2C%20applied%20and%20laboratory%20skills%20relevant%20to%20the%20pursuit%20of%20research%20in%20laser%5Cu2013plasma%20interaction%20physics%20and%20inertial%20confinement%20fusion%20%28ICF%29.%20Lectures%20are%20intermingled%20with%20laboratory%20sessions%20and%20continuous%20assessment%20activities.%20The%20programme%2C%20which%20is%20led%20by%20workers%20from%20the%20Technological%20Educational%20Institute%20%28TEI%29%20of%20Crete%2C%20and%20supported%20by%20co-workers%20from%20the%20Queen%5Cu2019s%20University%20Belfast%2C%20the%20University%20of%20Bordeaux%2C%20the%20Czech%20Technical%20University%20in%20Prague%2C%20Ecole%20Polytechnique%2C%20the%20University%20of%20Ioannina%2C%20the%20University%20of%20Salamanca%20and%20the%20University%20of%20York%2C%20has%20just%20completed%20its%20first%20year.%20Thus%20far%20three%20Learning%20Teaching%20Training%20%28LTT%29%20activities%20have%20been%20held%2C%20at%20the%20Queen%5Cu2019s%20University%20Belfast%2C%20the%20University%20of%20Bordeaux%20and%20the%20Centre%20for%20Plasma%20Physics%20and%20Lasers%20%28CPPL%29%20of%20TEI%20Crete.%20The%20last%20of%20these%20was%20a%20two-week%20long%20Intensive%20Programme%20%28IP%29%2C%20while%20the%20activities%20at%20the%20other%20two%20universities%20were%20each%20five%20days%20in%20length.%20Thus%20far%20work%20has%20concentrated%20upon%20training%20in%20both%20theoretical%20and%20experimental%20work%20in%20plasma%20physics%2C%20high%20power%20laser%5Cu2013matter%20interactions%20and%20high%20energy%20density%20physics.%20The%20nature%20of%20the%20programme%20will%20be%20described%20in%20detail%20and%20some%20metrics%20relating%20to%20the%20activities%20carried%20out%20to%20date%20will%20be%20presented.%22%2C%22date%22%3A%222019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1017%5C%2Fhpl.2019.7%22%2C%22ISSN%22%3A%222095-4719%2C%202052-3289%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.cambridge.org%5C%2Fcore%5C%2Fproduct%5C%2Fidentifier%5C%2FS2095471919000070%5C%2Ftype%5C%2Fjournal_article%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A13Z%22%7D%7D%2C%7B%22key%22%3A%22VXMQPY6Y%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Pisanty%20et%20al.%22%2C%22parsedDate%22%3A%222019-05-22%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BPisanty%2C%20E.%2C%20Rego%2C%20L.%2C%20San%20Rom%26%23xE1%3Bn%2C%20J.%2C%20Pic%26%23xF3%3Bn%2C%20A.%2C%20Dorney%2C%20K.%20M.%2C%20Kapteyn%2C%20H.%20C.%2C%20Murnane%2C%20M.%20M.%2C%20Plaja%2C%20L.%2C%20Lewenstein%2C%20M.%2C%20%26amp%3B%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%20%282019%29.%20Conservation%20of%20Torus-knot%20Angular%20Momentum%20in%20High-order%20Harmonic%20Generation.%20%26lt%3Bi%26gt%3BPhysical%20Review%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B122%26lt%3B%5C%2Fi%26gt%3B%2820%29%2C%20203201.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.122.203201%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.122.203201%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Conservation%20of%20Torus-knot%20Angular%20Momentum%20in%20High-order%20Harmonic%20Generation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emilio%22%2C%22lastName%22%3A%22Pisanty%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%22%2C%22lastName%22%3A%22Rego%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%22%2C%22lastName%22%3A%22San%20Rom%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Pic%5Cu00f3n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kevin%20M.%22%2C%22lastName%22%3A%22Dorney%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henry%20C.%22%2C%22lastName%22%3A%22Kapteyn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20M.%22%2C%22lastName%22%3A%22Murnane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maciej%22%2C%22lastName%22%3A%22Lewenstein%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-5-22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevLett.122.203201%22%2C%22ISSN%22%3A%220031-9007%2C%201079-7114%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevLett.122.203201%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A11Z%22%7D%7D%2C%7B%22key%22%3A%22NX2AWWKL%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Proenca%20et%20al.%22%2C%22parsedDate%22%3A%222019-11-22%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BProenca%2C%20M.%20P.%2C%20Mu%26%23xF1%3Boz%2C%20M.%2C%20Villaverde%2C%20I.%2C%20Migliorini%2C%20A.%2C%20Raposo%2C%20V.%2C%20Lopez-Diaz%2C%20L.%2C%20Martinez%2C%20E.%2C%20%26amp%3B%20Prieto%2C%20J.%20L.%20%282019%29.%20Deterministic%20and%20time%20resolved%20thermo-magnetic%20switching%20in%20a%20nickel%20nanowire.%20%26lt%3Bi%26gt%3BScientific%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B9%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%2017339.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-019-54043-y%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-019-54043-y%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Deterministic%20and%20time%20resolved%20thermo-magnetic%20switching%20in%20a%20nickel%20nanowire%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20P.%22%2C%22lastName%22%3A%22Proenca%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Mu%5Cu00f1oz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Villaverde%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Migliorini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Lopez-Diaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Martinez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20L.%22%2C%22lastName%22%3A%22Prieto%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Heating%20a%20ferromagnetic%20material%20is%20often%20perceived%20as%20detrimental%20for%20most%20applications.%20This%20is%20indeed%20the%20case%20for%20modern%20nano-scaled%20spintronic%20devices%20which%20are%20operated%20solely%20%28at%20least%20ideally%29%20by%20an%20electric%20current.%20Heat%20is%20a%20by-product%20of%20the%20current-driven%20operation%20and%20it%20deteriorates%20many%20functionalities%20of%20the%20device.%20A%20large%20scientific%20and%20technological%20effort%20is%20devoted%20these%20days%20to%20avoid%20heat%20in%20modern%20magnetic%20nano%20devices.%20Here%20we%20show%20that%20heat%20can%20be%20used%20to%20provide%20an%20additional%20and%20useful%20degree%20of%20freedom%20in%20the%20control%20of%20the%20local%20magnetization%20at%20the%20nanoscale.%20In%20a%20ferromagnetic%20nanowire%2C%20temperature%20is%20used%20to%20induce%20a%20magnetic%20switching%20through%20a%20perfectly%20deterministic%20mechanism.%20The%20nucleation%20of%20the%20magnetic%20domain%20walls%20that%20triggers%20the%20switching%20can%20be%20achieved%20at%20a%20field%20considerably%20smaller%20than%20the%20nucleation%20field%20and%2C%20importantly%2C%20the%20exact%20moment%20of%20the%20magnetic%20switching%20can%20be%20pre-determined%20with%20nanosecond%20precision%20by%20controlling%20the%20power%20delivered%20locally%20to%20the%20switching%20area.%20With%20the%20help%20of%20micromagnetic%20simulations%20and%20a%20theoretical%20model%2C%20we%20provide%20an%20accurate%20explanation%20of%20how%20this%20deterministic%20thermo-magnetic%20switching%20operates.%20The%20concepts%20described%20in%20this%20work%20may%20lead%20to%20an%20increased%20functionality%20in%20magnetic%20nano-devices%20based%20on%20magnetic%20domain%20walls.%22%2C%22date%22%3A%222019-11-22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-019-54043-y%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-019-54043-y%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A51Z%22%7D%7D%2C%7B%22key%22%3A%22YK9ERRNL%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Puyuelo-Valdes%20et%20al.%22%2C%22parsedDate%22%3A%222019-12-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BPuyuelo-Valdes%2C%20P.%2C%20Henares%2C%20J.%20L.%2C%20Hannachi%2C%20F.%2C%20Ceccotti%2C%20T.%2C%20Domange%2C%20J.%2C%20Ehret%2C%20M.%2C%20d%26%23×2019%3BHumieres%2C%20E.%2C%20Lancia%2C%20L.%2C%20Marqu%26%23xE8%3Bs%2C%20J.-R.%2C%20Ribeyre%2C%20X.%2C%20Santos%2C%20J.%20J.%2C%20Tikhonchuk%2C%20V.%2C%20%26amp%3B%20Tarisien%2C%20M.%20%282019%29.%20Proton%20acceleration%20by%20collisionless%20shocks%20using%20a%20supersonic%20H2%20gas-jet%20target%20and%20high-power%20infrared%20laser%20pulses.%20%26lt%3Bi%26gt%3BPhysics%20of%20Plasmas%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B26%26lt%3B%5C%2Fi%26gt%3B%2812%29%2C%20123109.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5116337%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5116337%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Proton%20acceleration%20by%20collisionless%20shocks%20using%20a%20supersonic%20H2%20gas-jet%20target%20and%20high-power%20infrared%20laser%20pulses%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Puyuelo-Valdes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20L.%22%2C%22lastName%22%3A%22Henares%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Hannachi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Ceccotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Domange%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Ehret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22d%27Humieres%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Lancia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-R.%22%2C%22lastName%22%3A%22Marqu%5Cu00e8s%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22X.%22%2C%22lastName%22%3A%22Ribeyre%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20J.%22%2C%22lastName%22%3A%22Santos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Tikhonchuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Tarisien%22%7D%5D%2C%22abstractNote%22%3A%22For%20most%20laser-driven%20ion%20acceleration%20applications%2C%20a%20well-characterized%20intense%20ion%20beam%20with%20a%20low%20divergence%20and%20a%20controllable%20energy%20spectrum%20produced%20at%20a%20high%20repetition%20rate%20is%20needed.%20Gas-jet%20targets%20have%20given%20promising%20results%20in%20simulations%2C%20and%20they%20have%20several%20technical%20advantages%20for%20high-repetition-rate%20lasers.%20In%20this%20work%2C%20we%20report%20on%20proton%20acceleration%20to%20energies%20up%20to%206%5Cu2009MeV%20using%20a%20supersonic%20H2%20gas-jet%20target%20at%20the%20LULI%20PICO2000%20laser%20facility.%20The%20experimental%20results%20are%20compared%20with%20the%20plasma%20hydrodynamics%20and%20the%20particle-in-cell%20simulations%20to%20identify%20the%20acceleration%20mechanisms%20at%20play.%22%2C%22date%22%3A%222019-12-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5116337%22%2C%22ISSN%22%3A%221070-664X%2C%201089-7674%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fpop%5C%2Farticle%5C%2F26%5C%2F12%5C%2F123109%5C%2F253538%5C%2FProton-acceleration-by-collisionless-shocks-using%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A01Z%22%7D%7D%2C%7B%22key%22%3A%22VMCUVD6I%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Raposo%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRaposo%2C%20V.%2C%20Martinez%2C%20E.%2C%20Hernandez%2C%20A.%2C%20%26amp%3B%20Zazo%2C%20M.%20%282019%29.%20Micromagnetic%20Modeling%20of%20All-Optical%20Switching.%20%26lt%3Bi%26gt%3BIEEE%20Transactions%20on%20Magnetics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B55%26lt%3B%5C%2Fi%26gt%3B%287%29%2C%201%26%23×2013%3B6.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMAG.2018.2888902%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMAG.2018.2888902%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Micromagnetic%20Modeling%20of%20All-Optical%20Switching%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Martinez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Hernandez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Zazo%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%227%5C%2F2019%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FTMAG.2018.2888902%22%2C%22ISSN%22%3A%220018-9464%2C%201941-0069%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F8611312%5C%2F%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A53Z%22%7D%7D%2C%7B%22key%22%3A%224M4RH26N%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rego%20et%20al.%22%2C%22parsedDate%22%3A%222019-06-28%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRego%2C%20L.%2C%20Dorney%2C%20K.%20M.%2C%20Brooks%2C%20N.%20J.%2C%20Nguyen%2C%20Q.%20L.%2C%20Liao%2C%20C.-T.%2C%20San%20Rom%26%23xE1%3Bn%2C%20J.%2C%20Couch%2C%20D.%20E.%2C%20Liu%2C%20A.%2C%20Pisanty%2C%20E.%2C%20Lewenstein%2C%20M.%2C%20Plaja%2C%20L.%2C%20Kapteyn%2C%20H.%20C.%2C%20Murnane%2C%20M.%20M.%2C%20%26amp%3B%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%20%282019%29.%20Generation%20of%20extreme-ultraviolet%20beams%20with%20time-varying%20orbital%20angular%20momentum.%20%26lt%3Bi%26gt%3BScience%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B364%26lt%3B%5C%2Fi%26gt%3B%286447%29%2C%20eaaw9486.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fscience.aaw9486%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fscience.aaw9486%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Generation%20of%20extreme-ultraviolet%20beams%20with%20time-varying%20orbital%20angular%20momentum%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%22%2C%22lastName%22%3A%22Rego%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kevin%20M.%22%2C%22lastName%22%3A%22Dorney%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nathan%20J.%22%2C%22lastName%22%3A%22Brooks%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Quynh%20L.%22%2C%22lastName%22%3A%22Nguyen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chen-Ting%22%2C%22lastName%22%3A%22Liao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%22%2C%22lastName%22%3A%22San%20Rom%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20E.%22%2C%22lastName%22%3A%22Couch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Allison%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emilio%22%2C%22lastName%22%3A%22Pisanty%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maciej%22%2C%22lastName%22%3A%22Lewenstein%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henry%20C.%22%2C%22lastName%22%3A%22Kapteyn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20M.%22%2C%22lastName%22%3A%22Murnane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%5D%2C%22abstractNote%22%3A%22Pulses%20with%20a%20twist%20and%20torque%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Structured%20light%20beams%20can%20serve%20as%20vortex%20beams%20carrying%20optical%20angular%20momentum%20and%20have%20been%20used%20to%20enhance%20optical%20communications%20and%20imaging.%20Rego%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20et%20al.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20generated%20dynamic%20vortex%20pulses%20by%20interfering%20two%20incident%20time-delayed%20vortex%20beams%20with%20different%20orbital%20angular%20momenta%20through%20the%20process%20of%20high%20harmonic%20generation.%20A%20controlled%20time%20delay%20between%20the%20pulses%20allowed%20the%20high%20harmonic%20extreme-ultraviolet%20vortex%20beam%20to%20exhibit%20a%20time-dependent%20angular%20momentum%2C%20called%20self-torque.%20Such%20dynamic%20vortex%20pulses%20could%20potentially%20be%20used%20to%20manipulate%20nanostructures%20and%20atoms%20on%20ultrafast%20time%20scales.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Science%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20this%20issue%20p.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20eaaw9486%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Ultrafast%20pulses%20of%20twisted%20light%20carrying%20a%20controlled%20self-torque%20emerge%20via%20a%20high-harmonic%20generation%20technique.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20INTRODUCTION%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Light%20beams%20carry%20both%20energy%20and%20momentum%2C%20which%20can%20exert%20a%20small%20but%20detectable%20pressure%20on%20objects%20they%20illuminate.%20In%201992%2C%20it%20was%20realized%20that%20light%20can%20also%20possess%20orbital%20angular%20momentum%20%28OAM%29%20when%20the%20spatial%20shape%20of%20the%20beam%20of%20light%20rotates%20%28or%20twists%29%20around%20its%20own%20axis.%20Although%20not%20visible%20to%20the%20naked%20eye%2C%20the%20presence%20of%20OAM%20can%20be%20revealed%20when%20the%20light%20beam%20interacts%20with%20matter.%20OAM%20beams%20are%20enabling%20new%20applications%20in%20optical%20communications%2C%20microscopy%2C%20quantum%20optics%2C%20and%20microparticle%20manipulation.%20To%20date%2C%20however%2C%20all%20OAM%20beams%5Cu2014also%20known%20as%20vortex%20beams%5Cu2014have%20been%20static%3B%20that%20is%2C%20the%20OAM%20does%20not%20vary%20in%20time.%20Here%20we%20introduce%20and%20experimentally%20validate%20a%20new%20property%20of%20light%20beams%2C%20manifested%20as%20a%20time-varying%20OAM%20along%20the%20light%20pulse%3B%20we%20term%20this%20property%20the%20self-torque%20of%20light.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20RATIONALE%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Although%20self-torque%20is%20found%20in%20diverse%20physical%20systems%20%28e.g.%2C%20electrodynamics%20and%20general%20relativity%29%2C%20to%20date%20it%20was%20not%20realized%20that%20light%20could%20possess%20such%20a%20property%2C%20where%20no%20external%20forces%20are%20involved.%20Self-torque%20is%20an%20inherent%20property%20of%20light%2C%20distinguished%20from%20the%20mechanical%20torque%20exerted%20on%20matter%20by%20static-OAM%20beams.%20Extreme-ultraviolet%20%28EUV%29%20self-torqued%20beams%20naturally%20arise%20when%20the%20extreme%20nonlinear%20process%20of%20high%20harmonic%20generation%20%28HHG%29%20is%20driven%20by%20two%20ultrafast%20laser%20pulses%20with%20different%20OAM%20and%20time%20delayed%20with%20respect%20to%20each%20other.%20HHG%20imprints%20a%20time-varying%20OAM%20along%20the%20EUV%20pulses%2C%20where%20all%20subsequent%20OAM%20components%20are%20physically%20present.%20In%20the%20future%2C%20this%20new%20class%20of%20dynamic-OAM%20beams%20could%20be%20used%20for%20manipulating%20the%20fastest%20magnetic%2C%20topological%2C%20molecular%2C%20and%20quantum%20excitations%20at%20the%20nanoscale.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20RESULTS%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Self-torqued%20beams%20are%20naturally%20produced%20by%20HHG%2C%20a%20process%20in%20which%20an%20ultrafast%20laser%20pulse%20is%20coherently%20upconverted%20into%20the%20EUV%20and%20x-ray%20regions%20of%20the%20spectrum.%20By%20driving%20the%20HHG%20process%20with%20two%20time-delayed%2C%20infrared%20vortex%20pulses%20possessing%20different%20OAM%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2113%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2113%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20the%20generated%20high%20harmonics%20emerge%20as%20EUV%20beams%20with%20a%20self-torque%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu210f%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03be%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20q%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2243%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu210f%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20q%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2113%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2212%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2113%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20t%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20d%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20that%20depends%20on%20the%20properties%20of%20the%20driving%20fields%5Cu2014that%20is%2C%20their%20OAM%20content%20and%20their%20relative%20time%20delay%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20t%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20d%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cu2014and%20on%20the%20harmonic%20order%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20q%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20Notably%2C%20the%20self-torque%20of%20light%20also%20manifests%20as%20a%20frequency%20chirp%20along%20their%20azimuthal%20coordinate%2C%20which%20enables%20its%20experimental%20characterization.%20This%20ultrafast%2C%20continuous%2C%20temporal%20OAM%20variation%20that%20spans%20from%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20q%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2113%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20to%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20q%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2113%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20is%20much%20smaller%20than%20the%20driving%20laser%20pulse%20duration%20and%20changes%20on%20femtosecond%20%2810%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu221215%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%29%20and%20even%20subfemtosecond%20time%20scales%20for%20high%20values%20of%20self-torque.%20The%20presence%20of%20self-torque%20in%20the%20experimentally%20generated%20EUV%20beams%20is%20confirmed%20by%20measuring%20their%20azimuthal%20frequency%20chirp%2C%20which%20is%20controlled%20by%20adjusting%20the%20time%20delay%20between%20the%20driving%20pulses.%20In%20addition%2C%20if%20driven%20by%20few-cycle%20pulses%2C%20the%20large%20amount%20of%20frequency%20chirp%20results%20in%20a%20supercontinuum%20EUV%20spectrum.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CONCLUSION%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20We%20have%20theoretically%20predicted%20and%20experimentally%20generated%20light%20beams%20with%20a%20new%20property%20that%20we%20call%20the%20self-torque%20of%20light%2C%20where%20the%20OAM%20content%20varies%20extremely%20rapidly%20in%20time%2C%20along%20the%20pulse%20itself.%20This%20inherent%20property%20of%20light%20opens%20additional%20routes%20for%20creating%20structured%20light%20beams.%20In%20addition%2C%20because%20the%20OAM%20value%20is%20changing%20on%20femtosecond%20time%20scales%2C%20at%20wavelengths%20much%20shorter%20than%20those%20of%20visible%20light%2C%20self-torqued%20HHG%20beams%20can%20be%20extraordinary%20tools%20for%20laser-matter%20manipulation%20on%20attosecond%20time%20and%20nanometer%20spatial%20scales.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Generation%20of%20EUV%20beams%20with%20self-torque.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20A%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20Two%20time-delayed%2C%20femtosecond%20infrared%20%28IR%29%20pulses%20with%20different%20OAM%20are%20focused%20into%20a%20gas%20target%20to%20produce%20self-torqued%20EUV%20beams%20through%20HHG.%20The%20distinctive%20signature%20of%20self-torqued%20beams%20is%20their%20time-dependent%20OAM%2C%20as%20shown%20in%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20for%20the%2017th%20harmonic%20%2847%20nm%2C%20with%20self-torque%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03be%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2017%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%201.32%20fs%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20The%20self-torque%20imprints%20an%20azimuthal%20frequency%20chirp%2C%20which%20enables%20its%20experimental%20measurement.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Light%20fields%20carrying%20orbital%20angular%20momentum%20%28OAM%29%20provide%20powerful%20capabilities%20for%20applications%20in%20optical%20communications%2C%20microscopy%2C%20quantum%20optics%2C%20and%20microparticle%20manipulation.%20We%20introduce%20a%20property%20of%20light%20beams%2C%20manifested%20as%20a%20temporal%20OAM%20variation%20along%20a%20pulse%3A%20the%20self-torque%20of%20light.%20Although%20self-torque%20is%20found%20in%20diverse%20physical%20systems%20%28i.e.%2C%20electrodynamics%20and%20general%20relativity%29%2C%20it%20was%20not%20realized%20that%20light%20could%20possess%20such%20a%20property.%20We%20demonstrate%20that%20extreme-ultraviolet%20self-torqued%20beams%20arise%20in%20high-harmonic%20generation%20driven%20by%20time-delayed%20pulses%20with%20different%20OAM.%20We%20monitor%20the%20self-torque%20of%20extreme-ultraviolet%20beams%20through%20their%20azimuthal%20frequency%20chirp.%20This%20class%20of%20dynamic-OAM%20beams%20provides%20the%20ability%20for%20controlling%20magnetic%2C%20topological%2C%20and%20quantum%20excitations%20and%20for%20manipulating%20molecules%20and%20nanostructures%20on%20their%20natural%20time%20and%20length%20scales.%22%2C%22date%22%3A%222019-06-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1126%5C%2Fscience.aaw9486%22%2C%22ISSN%22%3A%220036-8075%2C%201095-9203%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.science.org%5C%2Fdoi%5C%2F10.1126%5C%2Fscience.aaw9486%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A23%3A42Z%22%7D%7D%2C%7B%22key%22%3A%22NV7PGXFE%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rodr%5Cu00edguez-Beltr%5Cu00e1n%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRodr%26%23xED%3Bguez-Beltr%26%23xE1%3Bn%2C%20R.%20I.%2C%20Mart%26%23xED%3Bnez-Tong%2C%20D.%20E.%2C%20Reyes-Contreras%2C%20A.%2C%20Paszkiewicz%2C%20S.%2C%20Szymczyk%2C%20A.%2C%20Ezquerra%2C%20T.%20A.%2C%20Moreno%2C%20P.%2C%20%26amp%3B%20Rebollar%2C%20E.%20%282019%29.%20Laterally-resolved%20mechanical%20and%20tribological%20properties%20of%20laser-structured%20polymer%20nanocomposites.%20%26lt%3Bi%26gt%3BPolymer%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B168%26lt%3B%5C%2Fi%26gt%3B%2C%20178%26%23×2013%3B184.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.polymer.2019.02.034%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.polymer.2019.02.034%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Laterally-resolved%20mechanical%20and%20tribological%20properties%20of%20laser-structured%20polymer%20nanocomposites%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ren%5Cu00e9%20I.%22%2C%22lastName%22%3A%22Rodr%5Cu00edguez-Beltr%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20E.%22%2C%22lastName%22%3A%22Mart%5Cu00ednez-Tong%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Adela%22%2C%22lastName%22%3A%22Reyes-Contreras%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sandra%22%2C%22lastName%22%3A%22Paszkiewicz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%22%2C%22lastName%22%3A%22Szymczyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tiberio%20A.%22%2C%22lastName%22%3A%22Ezquerra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pablo%22%2C%22lastName%22%3A%22Moreno%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esther%22%2C%22lastName%22%3A%22Rebollar%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2204%5C%2F2019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.polymer.2019.02.034%22%2C%22ISSN%22%3A%2200323861%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS003238611930165X%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A59Z%22%7D%7D%2C%7B%22key%22%3A%22L4DM9436%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Romero%20et%20al.%22%2C%22parsedDate%22%3A%222019-12-19%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRomero%2C%20C.%2C%20Garc%26%23xED%3Ba%20Ajates%2C%20J.%2C%20Chen%2C%20F.%2C%20%26amp%3B%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%20%282019%29.%20Fabrication%20of%20Tapered%20Circular%20Depressed-Cladding%20Waveguides%20in%20Nd%3AYAG%20Crystal%20by%20Femtosecond-Laser%20Direct%20Inscription.%20%26lt%3Bi%26gt%3BMicromachines%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B11%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%2010.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fmi11010010%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fmi11010010%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Fabrication%20of%20Tapered%20Circular%20Depressed-Cladding%20Waveguides%20in%20Nd%3AYAG%20Crystal%20by%20Femtosecond-Laser%20Direct%20Inscription%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%22%2C%22lastName%22%3A%22Garc%5Cu00eda%20Ajates%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%5D%2C%22abstractNote%22%3A%22Crystalline%20materials%20are%20excellent%20substrates%20for%20the%20integration%20of%20compact%20photonic%20devices%20benefiting%20from%20the%20unique%20optical%20properties%20of%20these%20materials.%20The%20technique%20of%20direct%20inscription%20with%20femtosecond%20lasers%2C%20as%20an%20advantage%20over%20other%20techniques%2C%20has%20opened%20the%20door%20to%20the%20fabrication%20of%20true%20three-dimensional%20%283D%29%20photonic%20devices%20in%20almost%20any%20transparent%20substrate.%20Depressed-cladding%20waveguides%20have%20been%20demonstrated%20to%20be%20an%20excellent%20and%20versatile%20platform%20for%20the%20integration%20of%203D%20photonic%20circuits%20in%20crystals.%20Here%2C%20we%20present%20the%20technique%20that%20we%20have%20developed%20to%20inscribe%20tapered%20depressed-cladding%20waveguides%20with%20a%20circular%20section%20for%20the%20control%20of%20the%20modal%20behavior.%20As%20a%20proof%20of%20concept%2C%20we%20have%20applied%20the%20technique%20to%20fabricate%20structures%20in%20Nd%3AYAG%20crystal%20that%20efficiently%20change%20the%20modal%20behavior%20from%20highly%20multimodal%20to%20monomodal%2C%20in%20the%20visible%20and%20near%20infrared%2C%20with%20reduction%20factors%20in%20the%20waveguide%20radius%20of%20up%20to%204%3A1.%20Our%20results%20are%20interesting%20for%20different%20devices%20such%20as%20waveguide%20lasers%2C%20frequency%20converters%20or%20connectors%20between%20external%20devices%20with%20different%20core%20sizes.%22%2C%22date%22%3A%222019-12-19%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fmi11010010%22%2C%22ISSN%22%3A%222072-666X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F2072-666X%5C%2F11%5C%2F1%5C%2F10%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A54Z%22%7D%7D%2C%7B%22key%22%3A%224TDZE6NF%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sanchez-Tejerina%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSanchez-Tejerina%2C%20L.%2C%20Martinez%2C%20E.%2C%20Raposo%2C%20V.%2C%20%26amp%3B%20Alejos%2C%20O.%20%282019%29.%20Controlled%20Current-Driven%20Bi-Directional%20Motion%20of%20Trains%20of%20Domain%20Walls%20Along%20a%20Ferromagnetic%20Strip.%20%26lt%3Bi%26gt%3BIEEE%20Transactions%20on%20Magnetics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B55%26lt%3B%5C%2Fi%26gt%3B%282%29%2C%201%26%23×2013%3B4.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMAG.2018.2859829%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMAG.2018.2859829%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Controlled%20Current-Driven%20Bi-Directional%20Motion%20of%20Trains%20of%20Domain%20Walls%20Along%20a%20Ferromagnetic%20Strip%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Sanchez-Tejerina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Martinez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oscar%22%2C%22lastName%22%3A%22Alejos%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222%5C%2F2019%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FTMAG.2018.2859829%22%2C%22ISSN%22%3A%220018-9464%2C%201941-0069%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F8466015%5C%2F%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A42Z%22%7D%7D%2C%7B%22key%22%3A%22FFMQ2Q65%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sodupe%20Ortega%20et%20al.%22%2C%22parsedDate%22%3A%222019-02-18%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSodupe%20Ortega%2C%20E.%2C%20Sanz-Garcia%2C%20A.%2C%20Pernia-Espinoza%2C%20A.%2C%20%26amp%3B%20Escobedo-Lucea%2C%20C.%20%282019%29.%20Efficient%20Fabrication%20of%20Polycaprolactone%20Scaffolds%20for%20Printing%20Hybrid%20Tissue-Engineered%20Constructs.%20%26lt%3Bi%26gt%3BMaterials%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B12%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20613.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fma12040613%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fma12040613%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Efficient%20Fabrication%20of%20Polycaprolactone%20Scaffolds%20for%20Printing%20Hybrid%20Tissue-Engineered%20Constructs%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Enrique%22%2C%22lastName%22%3A%22Sodupe%20Ortega%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andres%22%2C%22lastName%22%3A%22Sanz-Garcia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alpha%22%2C%22lastName%22%3A%22Pernia-Espinoza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carmen%22%2C%22lastName%22%3A%22Escobedo-Lucea%22%7D%5D%2C%22abstractNote%22%3A%22Hybrid%20constructs%20represent%20substantial%20progress%20in%20tissue%20engineering%20%28TE%29%20towards%20producing%20implants%20of%20a%20clinically%20relevant%20size%20that%20recapitulate%20the%20structure%20and%20multicellular%20complexity%20of%20the%20native%20tissue.%20They%20are%20created%20by%20interlacing%20printed%20scaffolds%2C%20sacrificial%20materials%2C%20and%20cell-laden%20hydrogels.%20A%20suitable%20biomaterial%20is%20a%20polycaprolactone%20%28PCL%29%3B%20however%2C%20due%20to%20the%20higher%20viscosity%20of%20this%20biopolymer%2C%20three-dimensional%20%283D%29%20printing%20of%20PCL%20is%20slow%2C%20so%20reducing%20PCL%20print%20times%20remains%20a%20challenge.%20We%20investigated%20parameters%2C%20such%20as%20nozzle%20shape%20and%20size%2C%20carriage%20speed%2C%20and%20print%20temperature%2C%20to%20find%20a%20tradeoff%20that%20speeds%20up%20the%20creation%20of%20hybrid%20constructs%20of%20controlled%20porosity.%20We%20performed%20experiments%20with%20conical%2C%20cylindrical%2C%20and%20cylindrical%20shortened%20nozzles%20and%20numerical%20simulations%20to%20infer%20a%20more%20comprehensive%20understanding%20of%20PCL%20flow%20rate.%20We%20found%20that%20conical%20nozzles%20are%20advised%20as%20they%20exhibited%20the%20highest%20shear%20rate%2C%20which%20increased%20the%20flow%20rate.%20When%20working%20at%20a%20low%20carriage%20speed%2C%20conical%20nozzles%20of%20a%20small%20diameter%20tended%20to%20form-flatten%20filaments%20and%20became%20highly%20inefficient.%20However%2C%20raising%20the%20carriage%20speed%20revealed%20shortcomings%20because%20passing%20specific%20values%20created%20filaments%20with%20a%20heterogeneous%20diameter.%20Small%20nozzles%20produced%20scaffolds%20with%20thin%20strands%20but%20at%20long%20building%20times.%20Using%20large%20nozzles%20and%20a%20high%20carriage%20speed%20is%20recommended.%20Overall%2C%20we%20demonstrated%20that%20hybrid%20constructs%20with%20a%20clinically%20relevant%20size%20could%20be%20much%20more%20feasible%20to%20print%20when%20reaching%20a%20tradeoff%20between%20temperature%2C%20nozzle%20diameter%2C%20and%20speed.%22%2C%22date%22%3A%222019-02-18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fma12040613%22%2C%22ISSN%22%3A%221996-1944%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F1996-1944%5C%2F12%5C%2F4%5C%2F613%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A36Z%22%7D%7D%2C%7B%22key%22%3A%22MVWPAB36%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Urraca%20et%20al.%22%2C%22parsedDate%22%3A%222019-05-30%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BUrraca%2C%20R.%2C%20Antonanzas%2C%20J.%2C%20Sanz-Garcia%2C%20A.%2C%20%26amp%3B%20Martinez-de-Pison%2C%20F.%20J.%20%282019%29.%20Analysis%20of%20Spanish%20Radiometric%20Networks%20with%20the%20Novel%20Bias-Based%20Quality%20Control%20%28BQC%29%20Method.%20%26lt%3Bi%26gt%3BSensors%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B19%26lt%3B%5C%2Fi%26gt%3B%2811%29%2C%202483.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fs19112483%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fs19112483%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Analysis%20of%20Spanish%20Radiometric%20Networks%20with%20the%20Novel%20Bias-Based%20Quality%20Control%20%28BQC%29%20Method%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ruben%22%2C%22lastName%22%3A%22Urraca%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%22%2C%22lastName%22%3A%22Antonanzas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andres%22%2C%22lastName%22%3A%22Sanz-Garcia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francisco%20Javier%22%2C%22lastName%22%3A%22Martinez-de-Pison%22%7D%5D%2C%22abstractNote%22%3A%22Different%20types%20of%20measuring%20errors%20can%20increase%20the%20uncertainty%20of%20solar%20radiation%20measurements%2C%20but%20most%20common%20quality%20control%20%28QC%29%20methods%20do%20not%20detect%20frequent%20defects%20such%20as%20shading%20or%20calibration%20errors%20due%20to%20their%20low%20magnitude.%20We%20recently%20presented%20a%20new%20procedure%2C%20the%20Bias-based%20Quality%20Control%20%28BQC%29%2C%20that%20detects%20low-magnitude%20defects%20by%20analyzing%20the%20stability%20of%20the%20deviations%20between%20several%20independent%20radiation%20databases%20and%20measurements.%20In%20this%20study%2C%20we%20extend%20the%20validation%20of%20the%20BQC%20by%20analyzing%20the%20quality%20of%20all%20publicly%20available%20Spanish%20radiometric%20networks%20measuring%20global%20horizontal%20irradiance%20%289%20networks%2C%20732%20stations%29.%20Similarly%20to%20our%20previous%20validation%2C%20the%20BQC%20found%20many%20defects%20such%20as%20shading%2C%20soiling%2C%20or%20calibration%20issues%20not%20detected%20by%20classical%20QC%20methods.%20The%20results%20questioned%20the%20quality%20of%20SIAR%2C%20Euskalmet%2C%20MeteoGalica%2C%20and%20SOS%20Rioja%2C%20as%20all%20of%20them%20presented%20defects%20in%20more%20than%2040%25%20of%20their%20stations.%20Those%20studies%20based%20on%20these%20networks%20should%20be%20interpreted%20cautiously.%20In%20contrast%2C%20the%20number%20of%20defects%20was%20below%20a%205%25%20in%20BSRN%2C%20AEMET%2C%20MeteoNavarra%2C%20Meteocat%2C%20and%20SIAR%20Rioja%2C%20though%20the%20presence%20of%20defects%20in%20networks%20such%20as%20AEMET%20highlights%20the%20importance%20of%20QC%20even%20when%20using%20a%20priori%20reliable%20stations.%22%2C%22date%22%3A%222019-05-30%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fs19112483%22%2C%22ISSN%22%3A%221424-8220%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F1424-8220%5C%2F19%5C%2F11%5C%2F2483%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A15Z%22%7D%7D%2C%7B%22key%22%3A%222BDH4PNE%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Volpe%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BVolpe%2C%20L.%2C%20Fedosejevs%2C%20R.%2C%20Gatti%2C%20G.%2C%20P%26%23xE9%3Brez-Hern%26%23xE1%3Bndez%2C%20J.%20A.%2C%20M%26%23xE9%3Bndez%2C%20C.%2C%20Api%26%23xF1%3Baniz%2C%20J.%2C%20Vaisseau%2C%20X.%2C%20Salgado%2C%20C.%2C%20Huault%2C%20M.%2C%20Malko%2C%20S.%2C%20Zeraouli%2C%20G.%2C%20Ospina%2C%20V.%2C%20Longman%2C%20A.%2C%20De%20Luis%2C%20D.%2C%20Li%2C%20K.%2C%20Varela%2C%20O.%2C%20Garc%26%23xED%3Ba%2C%20E.%2C%20Hern%26%23xE1%3Bndez%2C%20I.%2C%20Pisonero%2C%20J.%20D.%2C%20%26%23×2026%3B%20Roso%2C%20L.%20%282019%29.%20Generation%20of%20high%20energy%20laser-driven%20electron%20and%20proton%20sources%20with%20the%20200%20TW%20system%20VEGA%202%20at%20the%20Centro%20de%20Laseres%20Pulsados.%20%26lt%3Bi%26gt%3BHigh%20Power%20Laser%20Science%20and%20Engineering%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B7%26lt%3B%5C%2Fi%26gt%3B%2C%20e25.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fhpl.2019.10%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fhpl.2019.10%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Generation%20of%20high%20energy%20laser-driven%20electron%20and%20proton%20sources%20with%20the%20200%20TW%20system%20VEGA%202%20at%20the%20Centro%20de%20Laseres%20Pulsados%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Volpe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Fedosejevs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Gatti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20A.%22%2C%22lastName%22%3A%22P%5Cu00e9rez-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22M%5Cu00e9ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Api%5Cu00f1aniz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22X.%22%2C%22lastName%22%3A%22Vaisseau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Salgado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Huault%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Malko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Zeraouli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Ospina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Longman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22De%20Luis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Varela%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20D.%22%2C%22lastName%22%3A%22Pisonero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Garc%5Cu00eda%20Ajates%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%22%2C%22lastName%22%3A%22Alvarez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Rico%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Arana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Toro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Roso%22%7D%5D%2C%22abstractNote%22%3A%22The%20Centro%20de%20Laseres%20Pulsados%20in%20Salamanca%2C%20Spain%20has%20recently%20started%20operation%20phase%20and%20the%20first%20user%20access%20period%20on%20the%206%20J%2030%20fs%20200%20TW%20system%20%28VEGA%5Cu00a02%29%20already%20started%20at%20the%20beginning%20of%202018.%20In%20this%20paper%20we%20report%20on%20two%20commissioning%20experiments%20recently%20performed%20on%20the%20VEGA%202%20system%20in%20preparation%20for%20the%20user%20campaign.%20VEGA%202%20system%20has%20been%20tested%20in%20different%20configurations%20depending%20on%20the%20focusing%20optics%20and%20targets%20used.%20One%20configuration%20%28long%20focal%20length%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24F%3D130%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0cm%29%20is%20for%20underdense%20laser%5Cu2013matter%20interaction%20where%20VEGA%202%20is%20focused%20onto%20a%20low%20density%20gas-jet%20generating%20electron%20beams%20%28via%20laser%20wake%20field%20acceleration%20mechanism%29%20with%20maximum%20energy%20up%20to%20500%20MeV%20and%20an%20X-ray%20betatron%20source%20with%20a%2010%20keV%20critical%20energy.%20A%20second%20configuration%20%28short%20focal%20length%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24F%3D40%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0cm%29%20is%20for%20overdense%20laser%5Cu2013matter%20interaction%20where%20VEGA%202%20is%20focused%20onto%20a%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%245~%5C%5Cunicode%5BSTIX%5D%7Bx03BC%7D%5C%5Ctext%7Bm%7D%24%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20thick%20Al%20target%20generating%20a%20proton%20beam%20with%20a%20maximum%20energy%20of%2010%20MeV%20and%20temperature%20of%202.5%20MeV.%20In%20this%20paper%20we%20present%20preliminary%20experimental%20results.%22%2C%22date%22%3A%222019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1017%5C%2Fhpl.2019.10%22%2C%22ISSN%22%3A%222095-4719%2C%202052-3289%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.cambridge.org%5C%2Fcore%5C%2Fproduct%5C%2Fidentifier%5C%2FS2095471919000100%5C%2Ftype%5C%2Fjournal_article%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A00Z%22%7D%7D%2C%7B%22key%22%3A%22KS9L4UJC%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wang%20et%20al.%22%2C%22parsedDate%22%3A%222019-02-04%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BWang%2C%20L.%2C%20Zhang%2C%20X.%2C%20Li%2C%20L.%2C%20Lu%2C%20Q.%2C%20Romero%2C%20C.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20%26amp%3B%20Chen%2C%20F.%20%282019%29.%20Second%20harmonic%20generation%20of%20femtosecond%20laser%20written%20depressed%20cladding%20waveguides%20in%20periodically%20poled%20MgO%3ALiTaO%20%26lt%3Bsub%26gt%3B3%26lt%3B%5C%2Fsub%26gt%3B%20crystal.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B27%26lt%3B%5C%2Fi%26gt%3B%283%29%2C%202101.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.27.002101%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.27.002101%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Second%20harmonic%20generation%20of%20femtosecond%20laser%20written%20depressed%20cladding%20waveguides%20in%20periodically%20poled%20MgO%3ALiTaO%20%3Csub%3E3%3C%5C%2Fsub%3E%20crystal%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lei%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xintong%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lingqi%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qingming%22%2C%22lastName%22%3A%22Lu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-02-04%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.27.002101%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-27-3-2101%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A41Z%22%7D%7D%2C%7B%22key%22%3A%22UATEKJQL%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Yanes%20et%20al.%22%2C%22parsedDate%22%3A%222019-09-23%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BYanes%2C%20R.%2C%20Garcia-Sanchez%2C%20F.%2C%20Luis%2C%20R.%20F.%2C%20Martinez%2C%20E.%2C%20Raposo%2C%20V.%2C%20Torres%2C%20L.%2C%20%26amp%3B%20Lopez-Diaz%2C%20L.%20%282019%29.%20Skyrmion%20motion%20induced%20by%20voltage-controlled%20in-plane%20strain%20gradients.%20%26lt%3Bi%26gt%3BApplied%20Physics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B115%26lt%3B%5C%2Fi%26gt%3B%2813%29%2C%20132401.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5119085%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5119085%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Skyrmion%20motion%20induced%20by%20voltage-controlled%20in-plane%20strain%20gradients%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Yanes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Garcia-Sanchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%20F.%22%2C%22lastName%22%3A%22Luis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Martinez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Torres%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Lopez-Diaz%22%7D%5D%2C%22abstractNote%22%3A%22Micromagnetic%20simulations%20are%20used%20to%20investigate%20the%20motion%20of%20magnetic%20skyrmions%20in%20an%20in-plane%20strain%20gradient.%20The%20skyrmion%20diameter%20and%20energy%20are%20found%20to%20depend%20on%20the%20strain%2C%20which%20leads%20to%20a%20force%20that%20moves%20the%20skyrmion%20toward%20regions%20with%20higher%20strain.%20An%20analytical%20expression%20for%20the%20skyrmion%20velocity%20as%20a%20function%20of%20the%20strain%20gradient%20is%20derived%20assuming%20a%20rigid%20profile%20for%20the%20skyrmion%2C%20and%20good%20agreement%20with%20simulations%20is%20obtained.%20Furthermore%2C%20electromechanical%20simulations%20of%20a%20hybrid%20ferromagnetic%5C%2Fpiezoelectric%20device%20show%20that%20the%20in-plane%20strain%20gradients%20needed%20to%20move%20skyrmions%20can%20be%20achieved%20by%20applying%20moderate%20voltages%20in%20the%20piezoelectric%20substrate%2C%20which%20offers%20an%20original%20way%20to%20control%20skyrmion%20motion%20efficiently.%22%2C%22date%22%3A%222019-09-23%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5119085%22%2C%22ISSN%22%3A%220003-6951%2C%201077-3118%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fapl%5C%2Farticle%5C%2F115%5C%2F13%5C%2F132401%5C%2F37554%5C%2FSkyrmion-motion-induced-by-voltage-controlled-in%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A15Z%22%7D%7D%2C%7B%22key%22%3A%22VMMFASS3%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Yanes%20et%20al.%22%2C%22parsedDate%22%3A%222019-04-24%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BYanes%2C%20R.%2C%20Ontoso%2C%20N.%2C%20Torres%2C%20L.%2C%20%26amp%3B%20Lopez-Diaz%2C%20L.%20%282019%29.%20Tailoring%20the%20interaction%20between%20spin%20waves%20and%20domain%20walls%20in%20nanostripes%20with%20perpendicular%20magnetic%20anisotropy.%20%26lt%3Bi%26gt%3BJournal%20of%20Physics%20D%3A%20Applied%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B52%26lt%3B%5C%2Fi%26gt%3B%2817%29%2C%20175002.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fab01f3%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Fab01f3%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tailoring%20the%20interaction%20between%20spin%20waves%20and%20domain%20walls%20in%20nanostripes%20with%20perpendicular%20magnetic%20anisotropy%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rocio%22%2C%22lastName%22%3A%22Yanes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nerea%22%2C%22lastName%22%3A%22Ontoso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Torres%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Lopez-Diaz%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-04-24%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6463%5C%2Fab01f3%22%2C%22ISSN%22%3A%220022-3727%2C%201361-6463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6463%5C%2Fab01f3%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A12Z%22%7D%7D%2C%7B%22key%22%3A%22BTZL3QEF%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zeraouli%20et%20al.%22%2C%22parsedDate%22%3A%222019-06-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BZeraouli%2C%20G.%2C%20Gatti%2C%20G.%2C%20Longman%2C%20A.%2C%20P%26%23xE9%3Brez-Hern%26%23xE1%3Bndez%2C%20J.%20A.%2C%20Arana%2C%20D.%2C%20Batani%2C%20D.%2C%20Jakubowska%2C%20K.%2C%20Volpe%2C%20L.%2C%20Roso%2C%20L.%2C%20%26amp%3B%20Fedosejevs%2C%20R.%20%282019%29.%20Development%20of%20an%20adjustable%20Kirkpatrick-Baez%20microscope%20for%20laser%20driven%20x-ray%20sources.%20%26lt%3Bi%26gt%3BReview%20of%20Scientific%20Instruments%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B90%26lt%3B%5C%2Fi%26gt%3B%286%29%2C%20063704.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5091103%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5091103%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Development%20of%20an%20adjustable%20Kirkpatrick-Baez%20microscope%20for%20laser%20driven%20x-ray%20sources%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Zeraouli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Gatti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Longman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20A.%22%2C%22lastName%22%3A%22P%5Cu00e9rez-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Arana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Batani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Jakubowska%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Volpe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Roso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Fedosejevs%22%7D%5D%2C%22abstractNote%22%3A%22A%20prototype%20of%20a%20highly%20adjustable%20Kirkpatrick-Baez%20%28KB%29%20microscope%20has%20been%20designed%2C%20built%2C%20and%20tested%20in%20a%20number%20of%20laser%20driven%20x-ray%20experiments%20using%20the%20high%20power%20%28200%20TW%29%20VEGA-2%20laser%20system%20of%20the%20Spanish%20Centre%20for%20Pulsed%20Lasers%20%28CLPU%29.%20The%20presented%20KB%20version%20consists%20of%20two%2C%20perpendicularly%20mounted%2C%20500%20%5Cu03bcm%20thick%20silicon%20wafers%2C%20coated%20with%20a%20layer%20of%20platinum%2C%20a%20few%20tens%20of%20nanometers%20thick.%20Unlike%20the%20usual%20millimeter%20thick%20glass%20substrate%2C%20this%20design%20allows%20for%20a%20larger%20bending%20flexibility%20and%20large%20adjustment%20range.%20According%20to%20simulations%2C%20this%20KB%20microscope%20offers%20broadband%20multikiloelectron%20volt%20reflection%20spectra%20%281%20eV%5Cu201320%20keV%29%2C%20allowing%20more%20spectral%20tunability%20than%20conventional%20Bragg%20crystals.%20In%20addition%20to%20be%20vacuum%20compatible%2C%20this%20prototype%20is%20characterized%20by%20a%20relatively%20small%20size%20%2821%20cm%20%5Cu00d7%2031%20cm%20%5Cu00d7%2027%20cm%29%20and%20permits%20remote%20control%20and%20modification%20both%20of%20the%20radii%20of%20curvature%20%28down%20to%2010%20m%29%20and%20of%20the%20grazing%20incidence%20angle%20%28up%20to%2060%20mrad%29.%20A%20few%20examples%20of%20focusing%20performance%20tests%20and%20experimental%20results%20are%20discussed.%22%2C%22date%22%3A%222019-06-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5091103%22%2C%22ISSN%22%3A%220034-6748%2C%201089-7623%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Frsi%5C%2Farticle%5C%2F90%5C%2F6%5C%2F063704%5C%2F360309%5C%2FDevelopment-of-an-adjustable-Kirkpatrick-Baez%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A45Z%22%7D%7D%2C%7B%22key%22%3A%22CVACM24D%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zurr%5Cu00f3n-Cifuentes%20et%20al.%22%2C%22parsedDate%22%3A%222019-03-04%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BZurr%26%23xF3%3Bn-Cifuentes%2C%20%26%23xD3%3B.%2C%20Boyero-Garc%26%23xED%3Ba%2C%20R.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20Pic%26%23xF3%3Bn%2C%20A.%2C%20%26amp%3B%20Plaja%2C%20L.%20%282019%29.%20Optical%20anisotropy%20of%20non-perturbative%20high-order%20harmonic%20generation%20in%20gapless%20graphene.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B27%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%207776.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.27.007776%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.27.007776%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Optical%20anisotropy%20of%20non-perturbative%20high-order%20harmonic%20generation%20in%20gapless%20graphene%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00d3scar%22%2C%22lastName%22%3A%22Zurr%5Cu00f3n-Cifuentes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberto%22%2C%22lastName%22%3A%22Boyero-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Pic%5Cu00f3n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222019-03-04%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.27.007776%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-27-5-7776%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A17Z%22%7D%7D%5D%7D
Alonso, B., & Sola, I. (2019). Measurement of Ultrashort Vector Pulses From Polarization Gates by In-Line, Single-Channel Spectral Interferometry. IEEE Journal of Selected Topics in Quantum Electronics, 25(4), 1–7. https://doi.org/10.1109/JSTQE.2019.2906266
Alvaredo, Á., Martín, M., Castell, P., Guzmán De Villoria, R., & Fernández-Blázquez, J. (2019). Non-Isothermal Crystallization Behavior of PEEK/Graphene Nanoplatelets Composites from Melt and Glass States. Polymers, 11(1), 124. https://doi.org/10.3390/polym11010124
Amini, K., Biegert, J., Calegari, F., Chacón, A., Ciappina, M. F., Dauphin, A., Efimov, D. K., Figueira De Morisson Faria, C., Giergiel, K., Gniewek, P., Landsman, A. S., Lesiuk, M., Mandrysz, M., Maxwell, A. S., Moszyński, R., Ortmann, L., Antonio Pérez-Hernández, J., Picón, A., Pisanty, E., … Lewenstein, M. (2019). Symphony on strong field approximation. Reports on Progress in Physics, 82(11), 116001. https://doi.org/10.1088/1361-6633/ab2bb1
Blanco, M., Cambronero, F., Flores-Arias, M. T., Conejero Jarque, E., Plaja, L., & Hernández-García, C. (2019). Ultraintense Femtosecond Magnetic Nanoprobes Induced by Azimuthally Polarized Laser Beams. ACS Photonics, 6(1), 38–42. https://doi.org/10.1021/acsphotonics.8b01312
Brigner, W. H., Friedman, J. S., Hassan, N., Jiang-Wei, L., Hu, X., Saha, D., Bennett, C. H., Marinella, M. J., Incorvia, J. A. C., & Garcia-Sanchez, F. (2019). Shape-Based Magnetic Domain Wall Drift for an Artificial Spintronic Leaky Integrate-and-Fire Neuron. IEEE Transactions on Electron Devices, 66(11), 4970–4975. https://doi.org/10.1109/TED.2019.2938952
Caridad, J. M., Power, S. R., Shylau, A. A., Gammelgaard, L., Jauho, A.-P., & Bøggild, P. (2019). Gate electrostatics and quantum capacitance in ballistic graphene devices. Physical Review B, 99(19), 195408. https://doi.org/10.1103/PhysRevB.99.195408
Chauwin, M., Hu, X., Garcia-Sanchez, F., Betrabet, N., Paler, A., Moutafis, C., & Friedman, J. S. (2019). Skyrmion Logic System for Large-Scale Reversible Computation. Physical Review Applied, 12(6), 064053. https://doi.org/10.1103/PhysRevApplied.12.064053
Chaves, F. A., Jiménez, D., Santos, J. E., Bøggild, P., & Caridad, J. M. (2019). Electrostatics of metal–graphene interfaces: sharp p–n junctions for electron-optical applications. Nanoscale, 11(21), 10273–10281. https://doi.org/10.1039/C9NR02029B
Crego, A., Conejero Jarque, E., & San Roman, J. (2019). Influence of the spatial confinement on the self-focusing of ultrashort pulses in hollow-core fibers. Scientific Reports, 9(1), 9546. https://doi.org/10.1038/s41598-019-45940-3
Del Barco, O., Sola, I. J., Jarque, E. C., & Bueno, J. M. (2019). Dielectric mirror optimization based on the phase-compensation method. Journal of Optics, 21(9), 095101. https://doi.org/10.1088/2040-8986/ab386e
Diez, L. H., Voto, M., Casiraghi, A., Belmeguenai, M., Roussigné, Y., Durin, G., Lamperti, A., Mantovan, R., Sluka, V., Jeudy, V., Liu, Y. T., Stashkevich, A., Chérif, S. M., Langer, J., Ocker, B., Lopez-Diaz, L., & Ravelosona, D. (2019). Enhancement of the Dzyaloshinskii-Moriya interaction and domain wall velocity through interface intermixing in Ta/CoFeB/MgO. Physical Review B, 99(5), 054431. https://doi.org/10.1103/PhysRevB.99.054431
Dorney, K. M., Rego, L., Brooks, N. J., San Román, J., Liao, C.-T., Ellis, J. L., Zusin, D., Gentry, C., Nguyen, Q. L., Shaw, J. M., Picón, A., Plaja, L., Kapteyn, H. C., Murnane, M. M., & Hernández-García, C. (2019). Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation. Nature Photonics, 13(2), 123–130. https://doi.org/10.1038/s41566-018-0304-3
Enrique-Jimenez, P., Quiles-Díaz, S., Salavagione, H. J., Fernández-Blázquez, J. P., Monclús, M. A., Guzman De Villoria, R., Gómez-Fatou, M. A., Ania, F., & Flores, A. (2019). Nanoindentation mapping of multiscale composites of graphene-reinforced polypropylene and carbon fibres. Composites Science and Technology, 169, 151–157. https://doi.org/10.1016/j.compscitech.2018.11.009
He, C. Z., Longman, A., Pérez-Hernández, J. A., De Marco, M., Salgado, C., Zeraouli, G., Gatti, G., Roso, L., Fedosejevs, R., & Hill, W. T. (2019). Towards an in situ, full-power gauge of the focal-volume intensity of petawatt-class lasers. Optics Express, 27(21), 30020. https://doi.org/10.1364/OE.27.030020
Henares, J. L., Puyuelo-Valdes, P., Hannachi, F., Ceccotti, T., Ehret, M., Gobet, F., Lancia, L., Marquès, J.-R., Santos, J. J., Versteegen, M., & Tarisien, M. (2019). Development of gas jet targets for laser-plasma experiments at near-critical density. Review of Scientific Instruments, 90(6), 063302. https://doi.org/10.1063/1.5093613
Herrera Diez, L., Liu, Y. T., Gilbert, D. A., Belmeguenai, M., Vogel, J., Pizzini, S., Martinez, E., Lamperti, A., Mohammedi, J. B., Laborieux, A., Roussigné, Y., Grutter, A. J., Arenholtz, E., Quarterman, P., Maranville, B., Ono, S., Hadri, M. S. E., Tolley, R., Fullerton, E. E., … Ravelosona, D. (2019). Nonvolatile Ionic Modification of the Dzyaloshinskii-Moriya Interaction. Physical Review Applied, 12(3), 034005. https://doi.org/10.1103/PhysRevApplied.12.034005
Hrabec, A., Shahbazi, K., Moore, T. A., Martinez, E., & Marrows, C. H. (2019). Tuning spin–orbit torques at magnetic domain walls in epitaxial Pt/Co/Pt 1− x Au x trilayers. Nanotechnology, 30(23), 234003. https://doi.org/10.1088/1361-6528/ab087b
Huang, P.-C., Hernandez-Garcia, C., Huang, J.-T., Huang, P.-Y., Rego, L., Lu, C.-H., Yang, S.-D., Plaja, L., Kung, A. H., & Chen, M.-C. (2019). Realization of Polarization Control in High-Order Harmonic Generation. IEEE Journal of Selected Topics in Quantum Electronics, 25(4), 1–12. https://doi.org/10.1109/JSTQE.2019.2919777
Huault, M., De Luis, D., Apiñaniz, J. I., De Marco, M., Salgado, C., Gordillo, N., Gutiérrez Neira, C., Pérez-Hernández, J. A., Fedosejevs, R., Gatti, G., Roso, L., & Volpe, L. (2019). A 2D scintillator-based proton detector for high repetition rate experiments. High Power Laser Science and Engineering, 7, e60. https://doi.org/10.1017/hpl.2019.43
Jessen, B. S., Gammelgaard, L., Thomsen, M. R., Mackenzie, D. M. A., Thomsen, J. D., Caridad, J. M., Duegaard, E., Watanabe, K., Taniguchi, T., Booth, T. J., Pedersen, T. G., Jauho, A.-P., & Bøggild, P. (2019). Lithographic band structure engineering of graphene. Nature Nanotechnology, 14(4), 340–346. https://doi.org/10.1038/s41565-019-0376-3
Jia, Y., He, R., Vázquez De Aldana, J. R., Liu, H., & Chen, F. (2019). Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers. Optics Express, 27(21), 30941. https://doi.org/10.1364/OE.27.030941
Kifle, E., Loiko, P., Romero, C., Rodríguez Vázquez De Aldana, J., Ródenas, A., Zakharov, V., Veniaminov, A., Aguiló, M., Díaz, F., Griebner, U., Petrov, V., & Mateos, X. (2019). Femtosecond-laser-written Ho:KGd(WO 4 ) 2 waveguide laser at 21 μm. Optics Letters, 44(7), 1738. https://doi.org/10.1364/OL.44.001738
Kifle, E., Loiko, P., Vázquez De Aldana, J. R., Romero, C., Ródenas, A., Zakharov, V., Veniaminov, A., Yu, H., Zhang, H., Chen, Y., Aguiló, M., Díaz, F., Griebner, U., Petrov, V., & Mateos, X. (2019). Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS 2. Optics Express, 27(6), 8745. https://doi.org/10.1364/OE.27.008745
Li, L., Nie, W., Li, Z., Zhang, B., Wang, L., Haro-Gonzalez, P., Jaque, D., Vazquez De Aldana, J. R., & Chen, F. (2019). Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO 3 Crystal. Journal of Lightwave Technology, 37(14), 3452–3458. https://doi.org/10.1109/JLT.2019.2917076
Li, L., Romero, C., Vázquez De Aldana, J. R., Wang, L., Tan, Y., & Chen, F. (2019). Efficient quasi-phase-matching in fan-out PPSLT crystal waveguides by femtosecond laser direct writing. Optics Express, 27(25), 36875. https://doi.org/10.1364/OE.27.036875
Liao, J., Vallobra, P., O’Brien, L., Atxitia, U., Raposo, V., Petit, D., Vemulkar, T., Malinowski, G., Hehn, M., Martínez, E., Mangin, S., & Cowburn, R. P. (2019). Controlling All‐Optical Helicity‐Dependent Switching in Engineered Rare‐Earth Free Synthetic Ferrimagnets. Advanced Science, 6(24), 1901876. https://doi.org/10.1002/advs.201901876
Liu, Q., Castillo-Rodríguez, M., Galisteo, A., Guzmán De Villoria, R., & Torralba, J. (2019). Wear Behavior of Copper–Graphite Composites Processed by Field-Assisted Hot Pressing. Journal of Composites Science, 3(1), 29. https://doi.org/10.3390/jcs3010029
López-Ripa, M., Jarabo, S., & Salgado-Remacha, F. J. (2019). Near-infrared supercontinuum source by intracavity silica-based highly-nonlinear fiber. Optics Letters, 44(8), 2016. https://doi.org/10.1364/OL.44.002016
Luis, R. F., Raposo, V., Alejos, O., & Martinez, E. (2019). Current-Driven Skyrmion Dynamics Along Curved Tracks. IEEE Transactions on Magnetics, 55(7), 1–8. https://doi.org/10.1109/TMAG.2019.2898011
Malko, S., Vaisseau, X., Perez, F., Batani, D., Curcio, A., Ehret, M., Honrubia, J., Jakubowska, K., Morace, A., Santos, J. J., & Volpe, L. (2019). Enhanced relativistic-electron beam collimation using two consecutive laser pulses. Scientific Reports, 9(1), 14061. https://doi.org/10.1038/s41598-019-50401-y
Miranda, M., Silva, F., Neoričić, L., Guo, C., Pervak, V., Canhota, M., Silva, A. S., Sola, Í. J., Romero, R., Guerreiro, P. T., L’Huillier, A., Arnold, C. L., & Crespo, H. (2019). All-optical measurement of the complete waveform of octave-spanning ultrashort light pulses. Optics Letters, 44(2), 191. https://doi.org/10.1364/OL.44.000191
Pasley, J., Andrianaki, G., Baroutsos, A., Batani, D., Benis, E. P., Borghesi, M., Clark, E., Cook, D., D’Humieres, E., Dimitriou, V., Dromey, B., Ehret, M., Fitilis, I., Grigoriadis, A., Kar, S., Kaselouris, E., Klimo, O., Koenig, M., Kosma, K., … Tatarakis, M. (2019). Innovative Education and Training in high power laser plasmas (PowerLaPs) for plasma physics, high power laser–matter interactions and high energy density physics – theory and experiments. High Power Laser Science and Engineering, 7, e23. https://doi.org/10.1017/hpl.2019.7
Pisanty, E., Rego, L., San Román, J., Picón, A., Dorney, K. M., Kapteyn, H. C., Murnane, M. M., Plaja, L., Lewenstein, M., & Hernández-García, C. (2019). Conservation of Torus-knot Angular Momentum in High-order Harmonic Generation. Physical Review Letters, 122(20), 203201. https://doi.org/10.1103/PhysRevLett.122.203201
Proenca, M. P., Muñoz, M., Villaverde, I., Migliorini, A., Raposo, V., Lopez-Diaz, L., Martinez, E., & Prieto, J. L. (2019). Deterministic and time resolved thermo-magnetic switching in a nickel nanowire. Scientific Reports, 9(1), 17339. https://doi.org/10.1038/s41598-019-54043-y
Puyuelo-Valdes, P., Henares, J. L., Hannachi, F., Ceccotti, T., Domange, J., Ehret, M., d’Humieres, E., Lancia, L., Marquès, J.-R., Ribeyre, X., Santos, J. J., Tikhonchuk, V., & Tarisien, M. (2019). Proton acceleration by collisionless shocks using a supersonic H2 gas-jet target and high-power infrared laser pulses. Physics of Plasmas, 26(12), 123109. https://doi.org/10.1063/1.5116337
Raposo, V., Martinez, E., Hernandez, A., & Zazo, M. (2019). Micromagnetic Modeling of All-Optical Switching. IEEE Transactions on Magnetics, 55(7), 1–6. https://doi.org/10.1109/TMAG.2018.2888902
Rego, L., Dorney, K. M., Brooks, N. J., Nguyen, Q. L., Liao, C.-T., San Román, J., Couch, D. E., Liu, A., Pisanty, E., Lewenstein, M., Plaja, L., Kapteyn, H. C., Murnane, M. M., & Hernández-García, C. (2019). Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 364(6447), eaaw9486. https://doi.org/10.1126/science.aaw9486
Rodríguez-Beltrán, R. I., Martínez-Tong, D. E., Reyes-Contreras, A., Paszkiewicz, S., Szymczyk, A., Ezquerra, T. A., Moreno, P., & Rebollar, E. (2019). Laterally-resolved mechanical and tribological properties of laser-structured polymer nanocomposites. Polymer, 168, 178–184. https://doi.org/10.1016/j.polymer.2019.02.034
Romero, C., García Ajates, J., Chen, F., & Vázquez De Aldana, J. R. (2019). Fabrication of Tapered Circular Depressed-Cladding Waveguides in Nd:YAG Crystal by Femtosecond-Laser Direct Inscription. Micromachines, 11(1), 10. https://doi.org/10.3390/mi11010010
Sanchez-Tejerina, L., Martinez, E., Raposo, V., & Alejos, O. (2019). Controlled Current-Driven Bi-Directional Motion of Trains of Domain Walls Along a Ferromagnetic Strip. IEEE Transactions on Magnetics, 55(2), 1–4. https://doi.org/10.1109/TMAG.2018.2859829
Sodupe Ortega, E., Sanz-Garcia, A., Pernia-Espinoza, A., & Escobedo-Lucea, C. (2019). Efficient Fabrication of Polycaprolactone Scaffolds for Printing Hybrid Tissue-Engineered Constructs. Materials, 12(4), 613. https://doi.org/10.3390/ma12040613
Urraca, R., Antonanzas, J., Sanz-Garcia, A., & Martinez-de-Pison, F. J. (2019). Analysis of Spanish Radiometric Networks with the Novel Bias-Based Quality Control (BQC) Method. Sensors, 19(11), 2483. https://doi.org/10.3390/s19112483
Volpe, L., Fedosejevs, R., Gatti, G., Pérez-Hernández, J. A., Méndez, C., Apiñaniz, J., Vaisseau, X., Salgado, C., Huault, M., Malko, S., Zeraouli, G., Ospina, V., Longman, A., De Luis, D., Li, K., Varela, O., García, E., Hernández, I., Pisonero, J. D., … Roso, L. (2019). Generation of high energy laser-driven electron and proton sources with the 200 TW system VEGA 2 at the Centro de Laseres Pulsados. High Power Laser Science and Engineering, 7, e25. https://doi.org/10.1017/hpl.2019.10
Wang, L., Zhang, X., Li, L., Lu, Q., Romero, C., Vázquez De Aldana, J. R., & Chen, F. (2019). Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO:LiTaO 3 crystal. Optics Express, 27(3), 2101. https://doi.org/10.1364/OE.27.002101
Yanes, R., Garcia-Sanchez, F., Luis, R. F., Martinez, E., Raposo, V., Torres, L., & Lopez-Diaz, L. (2019). Skyrmion motion induced by voltage-controlled in-plane strain gradients. Applied Physics Letters, 115(13), 132401. https://doi.org/10.1063/1.5119085
Yanes, R., Ontoso, N., Torres, L., & Lopez-Diaz, L. (2019). Tailoring the interaction between spin waves and domain walls in nanostripes with perpendicular magnetic anisotropy. Journal of Physics D: Applied Physics, 52(17), 175002. https://doi.org/10.1088/1361-6463/ab01f3
Zeraouli, G., Gatti, G., Longman, A., Pérez-Hernández, J. A., Arana, D., Batani, D., Jakubowska, K., Volpe, L., Roso, L., & Fedosejevs, R. (2019). Development of an adjustable Kirkpatrick-Baez microscope for laser driven x-ray sources. Review of Scientific Instruments, 90(6), 063704. https://doi.org/10.1063/1.5091103
Zurrón-Cifuentes, Ó., Boyero-García, R., Hernández-García, C., Picón, A., & Plaja, L. (2019). Optical anisotropy of non-perturbative high-order harmonic generation in gapless graphene. Optics Express, 27(5), 7776. https://doi.org/10.1364/OE.27.007776

8111616 N7Z8DZV2 2018 1 apa 50 creator asc 1 7184 https://lumes.usal.es/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22GEC8T8TG%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ajates%20et%20al.%22%2C%22parsedDate%22%3A%222018-07-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BAjates%2C%20J.%20G.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Chen%2C%20F.%2C%20%26amp%3B%20R%26%23xF3%3Bdenas%2C%20A.%20%282018%29.%20Three-dimensional%20beam-splitting%20transitions%20and%20numerical%20modelling%20of%20direct-laser-written%20near-infrared%20LiNbO%20%26lt%3Bsub%26gt%3B3%26lt%3B%5C%2Fsub%26gt%3B%20cladding%20waveguides.%20%26lt%3Bi%26gt%3BOptical%20Materials%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B8%26lt%3B%5C%2Fi%26gt%3B%287%29%2C%201890.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOME.8.001890%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOME.8.001890%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Three-dimensional%20beam-splitting%20transitions%20and%20numerical%20modelling%20of%20direct-laser-written%20near-infrared%20LiNbO%20%3Csub%3E3%3C%5C%2Fsub%3E%20cladding%20waveguides%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20G.%22%2C%22lastName%22%3A%22Ajates%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Air%5Cu00e1n%22%2C%22lastName%22%3A%22R%5Cu00f3denas%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-07-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOME.8.001890%22%2C%22ISSN%22%3A%222159-3930%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dome-8-7-1890%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A52Z%22%7D%7D%2C%7B%22key%22%3A%22QZ2P4GI7%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Alejos%20et%20al.%22%2C%22parsedDate%22%3A%222018-01-07%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BAlejos%2C%20O.%2C%20Raposo%2C%20V.%2C%20Sanchez-Tejerina%2C%20L.%2C%20Tomasello%2C%20R.%2C%20Finocchio%2C%20G.%2C%20%26amp%3B%20Martinez%2C%20E.%20%282018%29.%20Current-driven%20domain%20wall%20dynamics%20in%20ferromagnetic%20layers%20synthetically%20exchange-coupled%20by%20a%20spacer%3A%20A%20micromagnetic%20study.%20%26lt%3Bi%26gt%3BJournal%20of%20Applied%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B123%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%20013901.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5009739%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5009739%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Current-driven%20domain%20wall%20dynamics%20in%20ferromagnetic%20layers%20synthetically%20exchange-coupled%20by%20a%20spacer%3A%20A%20micromagnetic%20study%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oscar%22%2C%22lastName%22%3A%22Alejos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Sanchez-Tejerina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Riccardo%22%2C%22lastName%22%3A%22Tomasello%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giovanni%22%2C%22lastName%22%3A%22Finocchio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Martinez%22%7D%5D%2C%22abstractNote%22%3A%22The%20current-driven%20domain%20wall%20motion%20along%20two%20exchange-coupled%20ferromagnetic%20layers%20with%20perpendicular%20anisotropy%20is%20studied%20by%20means%20of%20micromagnetic%20simulations%20and%20compared%20to%20the%20conventional%20case%20of%20a%20single%20ferromagnetic%20layer.%20Our%20results%2C%20where%20only%20the%20lower%20ferromagnetic%20layer%20is%20subjected%20to%20the%20interfacial%20Dzyaloshinskii-Moriya%20interaction%20and%20to%20the%20spin%20Hall%20effect%2C%20indicate%20that%20the%20domain%20walls%20can%20be%20synchronously%20driven%20in%20the%20presence%20of%20a%20strong%20interlayer%20exchange%20coupling%2C%20and%20that%20the%20velocity%20is%20significantly%20enhanced%20due%20to%20the%20antiferromagnetic%20exchange%20coupling%20as%20compared%20with%20the%20single-layer%20case.%20On%20the%20contrary%2C%20when%20the%20coupling%20is%20of%20ferromagnetic%20nature%2C%20the%20velocity%20is%20reduced.%20We%20provide%20a%20full%20micromagnetic%20characterization%20of%20the%20current-driven%20motion%20in%20these%20multilayers%2C%20both%20in%20the%20absence%20and%20in%20the%20presence%20of%20longitudinal%20fields%2C%20and%20the%20results%20are%20explained%20based%20on%20a%20one-dimensional%20model.%20The%20interfacial%20Dzyaloshinskii-Moriya%20interaction%2C%20only%20necessary%20in%20this%20lower%20layer%2C%20gives%20the%20required%20chirality%20to%20the%20magnetization%20textures%2C%20while%20the%20interlayer%20exchange%20coupling%20favors%20the%20synchronous%20movement%20of%20the%20coupled%20walls%20by%20a%20dragging%20mechanism%2C%20without%20significant%20tilting%20of%20the%20domain%20wall%20plane.%20Finally%2C%20the%20domain%20wall%20dynamics%20along%20curved%20strips%20is%20also%20evaluated.%20These%20results%20indicate%20that%20the%20antiferromagnetic%20coupling%20between%20the%20ferromagnetic%20layers%20mitigates%20the%20tilting%20of%20the%20walls%2C%20which%20suggest%20these%20systems%20to%20achieve%20efficient%20and%20highly%20packed%20displacement%20of%20trains%20of%20walls%20for%20spintronics%20devices.%20A%20study%2C%20taking%20into%20account%20defects%20and%20thermal%20fluctuations%2C%20allows%20to%20analyze%20the%20validity%20range%20of%20these%20claims.%22%2C%22date%22%3A%222018-01-07%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5009739%22%2C%22ISSN%22%3A%220021-8979%2C%201089-7550%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fjap%5C%2Farticle%5C%2F123%5C%2F1%5C%2F013901%5C%2F154594%5C%2FCurrent-driven-domain-wall-dynamics-in%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A13Z%22%7D%7D%2C%7B%22key%22%3A%228FHF2K9H%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Alonso%20et%20al.%22%2C%22parsedDate%22%3A%222018-02-19%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BAlonso%2C%20B.%2C%20Sola%2C%20%26%23xCD%3B.%20J.%2C%20%26amp%3B%20Crespo%2C%20H.%20%282018%29.%20Self-calibrating%20d-scan%3A%20measuring%20ultrashort%20laser%20pulses%20on-target%20using%20an%20arbitrary%20pulse%20compressor.%20%26lt%3Bi%26gt%3BScientific%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B8%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%203264.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-018-21701-6%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-018-21701-6%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Self-calibrating%20d-scan%3A%20measuring%20ultrashort%20laser%20pulses%20on-target%20using%20an%20arbitrary%20pulse%20compressor%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjam%5Cu00edn%22%2C%22lastName%22%3A%22Alonso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Helder%22%2C%22lastName%22%3A%22Crespo%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20most%20applications%20of%20ultrashort%20pulse%20lasers%2C%20temporal%20compressors%20are%20used%20to%20achieve%20a%20desired%20pulse%20duration%20in%20a%20target%20or%20sample%2C%20and%20precise%20temporal%20characterization%20is%20important.%20The%20dispersion-scan%20%28d-scan%29%20pulse%20characterization%20technique%20usually%20involves%20using%20glass%20wedges%20to%20impart%20variable%2C%20well-defined%20amounts%20of%20dispersion%20to%20the%20pulses%2C%20while%20measuring%20the%20spectrum%20of%20a%20nonlinear%20signal%20produced%20by%20those%20pulses.%20This%20works%20very%20well%20for%20broadband%20few-cycle%20pulses%2C%20but%20longer%2C%20narrower%20bandwidth%20pulses%20are%20much%20more%20difficult%20to%20measure%20this%20way.%20Here%20we%20demonstrate%20the%20concept%20of%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20self-calibrating%20d-scan%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20which%20extends%20the%20applicability%20of%20the%20d-scan%20technique%20to%20pulses%20of%20arbitrary%20duration%2C%20enabling%20their%20complete%20measurement%20without%20prior%20knowledge%20of%20the%20introduced%20dispersion.%20In%20particular%2C%20we%20show%20that%20the%20pulse%20compressors%20already%20employed%20in%20chirped%20pulse%20amplification%20%28CPA%29%20systems%20can%20be%20used%20to%20simultaneously%20compress%20and%20measure%20the%20temporal%20profile%20of%20the%20output%20pulses%20on-target%20in%20a%20simple%20way%2C%20without%20the%20need%20of%20additional%20diagnostics%20or%20calibrations%2C%20while%20at%20the%20same%20time%20calibrating%20the%20often-unknown%20differential%20dispersion%20of%20the%20compressor%20itself.%20We%20demonstrate%20the%20technique%20through%20simulations%20and%20experiments%20under%20known%20conditions.%20Finally%2C%20we%20apply%20it%20to%20the%20measurement%20and%20compression%20of%2027.5%5Cu2009fs%20pulses%20from%20a%20CPA%20laser.%22%2C%22date%22%3A%222018-02-19%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-018-21701-6%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-018-21701-6%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A21Z%22%7D%7D%2C%7B%22key%22%3A%22C7SHYP98%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Alonso%20et%20al.%22%2C%22parsedDate%22%3A%222018-04-16%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BAlonso%2C%20B.%2C%20P%26%23xE9%3Brez-Vizca%26%23xED%3Bno%2C%20J.%2C%20M%26%23xED%3Bnguez-Vega%2C%20G.%2C%20%26amp%3B%20Sola%2C%20%26%23xCD%3B.%20J.%20%282018%29.%20Tailoring%20the%20spatio-temporal%20distribution%20of%20diffractive%20focused%20ultrashort%20pulses%20through%20pulse%20shaping.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B26%26lt%3B%5C%2Fi%26gt%3B%288%29%2C%2010762.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.26.010762%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.26.010762%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tailoring%20the%20spatio-temporal%20distribution%20of%20diffractive%20focused%20ultrashort%20pulses%20through%20pulse%20shaping%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjam%5Cu00edn%22%2C%22lastName%22%3A%22Alonso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jorge%22%2C%22lastName%22%3A%22P%5Cu00e9rez-Vizca%5Cu00edno%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gladys%22%2C%22lastName%22%3A%22M%5Cu00ednguez-Vega%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-04-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.26.010762%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-26-8-10762%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A27Z%22%7D%7D%2C%7B%22key%22%3A%22AX7L2GRW%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Caridad%20et%20al.%22%2C%22parsedDate%22%3A%222018-02-13%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCaridad%2C%20J.%20M.%2C%20Power%2C%20S.%20R.%2C%20Lotz%2C%20M.%20R.%2C%20Shylau%2C%20A.%20A.%2C%20Thomsen%2C%20J.%20D.%2C%20Gammelgaard%2C%20L.%2C%20Booth%2C%20T.%20J.%2C%20Jauho%2C%20A.-P.%2C%20%26amp%3B%20B%26%23xF8%3Bggild%2C%20P.%20%282018%29.%20Conductance%20quantization%20suppression%20in%20the%20quantum%20Hall%20regime.%20%26lt%3Bi%26gt%3BNature%20Communications%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B9%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%20659.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-018-03064-8%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-018-03064-8%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Conductance%20quantization%20suppression%20in%20the%20quantum%20Hall%20regime%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M.%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephen%20R.%22%2C%22lastName%22%3A%22Power%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mikkel%20R.%22%2C%22lastName%22%3A%22Lotz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Artsem%20A.%22%2C%22lastName%22%3A%22Shylau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joachim%20D.%22%2C%22lastName%22%3A%22Thomsen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lene%22%2C%22lastName%22%3A%22Gammelgaard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20J.%22%2C%22lastName%22%3A%22Booth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antti-Pekka%22%2C%22lastName%22%3A%22Jauho%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22B%5Cu00f8ggild%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Conductance%20quantization%20is%20the%20quintessential%20feature%20of%20electronic%20transport%20in%20non-interacting%20mesoscopic%20systems.%20This%20phenomenon%20is%20observed%20in%20quasi%20one-dimensional%20conductors%20at%20zero%20magnetic%20field%20B%2C%20and%20the%20formation%20of%20edge%20states%20at%20finite%20magnetic%20fields%20results%20in%20wider%20conductance%20plateaus%20within%20the%20quantum%20Hall%20regime.%20Electrostatic%20interactions%20can%20change%20this%20picture%20qualitatively.%20At%20finite%20B%2C%20screening%20mechanisms%20in%20narrow%2C%20gated%20ballistic%20conductors%20are%20predicted%20to%20give%20rise%20to%20an%20increase%20in%20conductance%20and%20a%20suppression%20of%20quantization%20due%20to%20the%20appearance%20of%20additional%20conduction%20channels.%20Despite%20being%20a%20universal%20effect%2C%20this%20regime%20has%20proven%20experimentally%20elusive%20because%20of%20difficulties%20in%20realizing%20one-dimensional%20systems%20with%20sufficiently%20hard-walled%2C%20disorder-free%20confinement.%20Here%2C%20we%20experimentally%20demonstrate%20the%20suppression%20of%20conductance%20quantization%20within%20the%20quantum%20Hall%20regime%20for%20graphene%20nanoconstrictions%20with%20low%20edge%20roughness.%20Our%20findings%20may%20have%20profound%20impact%20on%20fundamental%20studies%20of%20quantum%20transport%20in%20finite-size%2C%20two-dimensional%20crystals%20with%20low%20disorder.%22%2C%22date%22%3A%222018-02-13%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-018-03064-8%22%2C%22ISSN%22%3A%222041-1723%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41467-018-03064-8%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A14Z%22%7D%7D%2C%7B%22key%22%3A%22FTY9NUMV%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Caridad%20et%20al.%22%2C%22parsedDate%22%3A%222018-08-08%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCaridad%2C%20J.%20M.%2C%20Calogero%2C%20G.%2C%20Pedrinazzi%2C%20P.%2C%20Santos%2C%20J.%20E.%2C%20Impellizzeri%2C%20A.%2C%20Gunst%2C%20T.%2C%20Booth%2C%20T.%20J.%2C%20Sordan%2C%20R.%2C%20B%26%23xF8%3Bggild%2C%20P.%2C%20%26amp%3B%20Brandbyge%2C%20M.%20%282018%29.%20A%20Graphene-Edge%20Ferroelectric%20Molecular%20Switch.%20%26lt%3Bi%26gt%3BNano%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B18%26lt%3B%5C%2Fi%26gt%3B%288%29%2C%204675%26%23×2013%3B4683.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.8b00797%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.8b00797%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Graphene-Edge%20Ferroelectric%20Molecular%20Switch%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M.%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gaetano%22%2C%22lastName%22%3A%22Calogero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paolo%22%2C%22lastName%22%3A%22Pedrinazzi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jaime%20E.%22%2C%22lastName%22%3A%22Santos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anthony%22%2C%22lastName%22%3A%22Impellizzeri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tue%22%2C%22lastName%22%3A%22Gunst%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20J.%22%2C%22lastName%22%3A%22Booth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roman%22%2C%22lastName%22%3A%22Sordan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22B%5Cu00f8ggild%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mads%22%2C%22lastName%22%3A%22Brandbyge%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-08-08%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.nanolett.8b00797%22%2C%22ISSN%22%3A%221530-6984%2C%201530-6992%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facs.nanolett.8b00797%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A48Z%22%7D%7D%2C%7B%22key%22%3A%22EA7EUSI2%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Caridad%20et%20al.%22%2C%22parsedDate%22%3A%222018-08-10%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCaridad%2C%20J.%20M.%2C%20Winters%2C%20S.%2C%20McCloskey%2C%20D.%2C%20Duesberg%2C%20G.%20S.%2C%20Donegan%2C%20J.%20F.%2C%20%26amp%3B%20Krsti%26%23×107%3B%2C%20V.%20%282018%29.%20Control%20of%20the%20plasmonic%20near-field%20in%20metallic%20nanohelices.%20%26lt%3Bi%26gt%3BNanotechnology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B29%26lt%3B%5C%2Fi%26gt%3B%2832%29%2C%20325204.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6528%5C%2Faac666%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6528%5C%2Faac666%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Control%20of%20the%20plasmonic%20near-field%20in%20metallic%20nanohelices%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sin%5Cu00e9ad%22%2C%22lastName%22%3A%22Winters%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22McCloskey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Georg%20S%22%2C%22lastName%22%3A%22Duesberg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20F%22%2C%22lastName%22%3A%22Donegan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vojislav%22%2C%22lastName%22%3A%22Krsti%5Cu0107%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-08-10%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6528%5C%2Faac666%22%2C%22ISSN%22%3A%220957-4484%2C%201361-6528%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-6528%5C%2Faac666%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A48Z%22%7D%7D%2C%7B%22key%22%3A%22RCLU6E8P%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Conejero%20Jarque%20et%20al.%22%2C%22parsedDate%22%3A%222018-02-02%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BConejero%20Jarque%2C%20E.%2C%20San%20Roman%2C%20J.%2C%20Silva%2C%20F.%2C%20Romero%2C%20R.%2C%20Holgado%2C%20W.%2C%20Gonzalez-Galicia%2C%20M.%20A.%2C%20Alonso%2C%20B.%2C%20Sola%2C%20I.%20J.%2C%20%26amp%3B%20Crespo%2C%20H.%20%282018%29.%20Universal%20route%20to%20optimal%20few-%20to%20single-cycle%20pulse%20generation%20in%20hollow-core%20fiber%20compressors.%20%26lt%3Bi%26gt%3BScientific%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B8%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%202256.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-018-20580-1%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-018-20580-1%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Universal%20route%20to%20optimal%20few-%20to%20single-cycle%20pulse%20generation%20in%20hollow-core%20fiber%20compressors%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Conejero%20Jarque%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22San%20Roman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Silva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%22%2C%22lastName%22%3A%22Holgado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20A.%22%2C%22lastName%22%3A%22Gonzalez-Galicia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Alonso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Crespo%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Gas-filled%20hollow-core%20fiber%20%28HCF%29%20pulse%20post-compressors%20generating%20few-%20to%20single-cycle%20pulses%20are%20a%20key%20enabling%20tool%20for%20attosecond%20science%20and%20ultrafast%20spectroscopy.%20Achieving%20optimum%20performance%20in%20this%20regime%20can%20be%20extremely%20challenging%20due%20to%20the%20ultra-broad%20bandwidth%20of%20the%20pulses%20and%20the%20need%20of%20an%20adequate%20temporal%20diagnostic.%20These%20difficulties%20have%20hindered%20the%20full%20exploitation%20of%20HCF%20post-compressors%2C%20namely%20the%20generation%20of%20stable%20and%20high-quality%20near-Fourier-transform-limited%20pulses.%20Here%20we%20show%20that%2C%20independently%20of%20conditions%20such%20as%20the%20type%20of%20gas%20or%20the%20laser%20system%20used%2C%20there%20is%20a%20universal%20route%20to%20obtain%20the%20shortest%20stable%20output%20pulse%20down%20to%20the%20single-cycle%20regime.%20Numerical%20simulations%20and%20experimental%20measurements%20performed%20with%20the%20dispersion-scan%20technique%20reveal%20that%2C%20in%20quite%20general%20conditions%2C%20post-compressed%20pulses%20exhibit%20a%20residual%20third-order%20dispersion%20intrinsic%20to%20optimum%20nonlinear%20propagation%20within%20the%20fiber%2C%20in%20agreement%20with%20measurements%20independently%20performed%20in%20several%20laboratories%20around%20the%20world.%20The%20understanding%20of%20this%20effect%20and%20its%20adequate%20correction%2C%20e.g.%20using%20simple%20transparent%20optical%20media%2C%20enables%20achieving%20high-quality%20post-compressed%20pulses%20with%20only%20minor%20changes%20in%20existing%20setups.%20These%20optimized%20sources%20have%20impact%20in%20many%20fields%20of%20science%20and%20technology%20and%20should%20enable%20new%20and%20exciting%20applications%20in%20the%20few-%20to%20single-cycle%20pulse%20regime.%22%2C%22date%22%3A%222018-02-02%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-018-20580-1%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-018-20580-1%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A50Z%22%7D%7D%2C%7B%22key%22%3A%22HECMEPNH%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ellis%20et%20al.%22%2C%22parsedDate%22%3A%222018-04-20%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BEllis%2C%20J.%20L.%2C%20Dorney%2C%20K.%20M.%2C%20Hickstein%2C%20D.%20D.%2C%20Brooks%2C%20N.%20J.%2C%20Gentry%2C%20C.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20Zusin%2C%20D.%2C%20Shaw%2C%20J.%20M.%2C%20Nguyen%2C%20Q.%20L.%2C%20Mancuso%2C%20C.%20A.%2C%20Matthijs%20Jansen%2C%20G.%20S.%2C%20Witte%2C%20S.%2C%20Kapteyn%2C%20H.%20C.%2C%20%26amp%3B%20Murnane%2C%20M.%20M.%20%282018%29.%20High%20harmonics%20with%20spatially%20varying%20ellipticity.%20%26lt%3Bi%26gt%3BOptica%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B5%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20479.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOPTICA.5.000479%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOPTICA.5.000479%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22High%20harmonics%20with%20spatially%20varying%20ellipticity%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennifer%20L.%22%2C%22lastName%22%3A%22Ellis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kevin%20M.%22%2C%22lastName%22%3A%22Dorney%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20D.%22%2C%22lastName%22%3A%22Hickstein%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nathan%20J.%22%2C%22lastName%22%3A%22Brooks%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Gentry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dmitriy%22%2C%22lastName%22%3A%22Zusin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Justin%20M.%22%2C%22lastName%22%3A%22Shaw%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Quynh%20L.%22%2C%22lastName%22%3A%22Nguyen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%20A.%22%2C%22lastName%22%3A%22Mancuso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%20S.%22%2C%22lastName%22%3A%22Matthijs%20Jansen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Witte%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henry%20C.%22%2C%22lastName%22%3A%22Kapteyn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20M.%22%2C%22lastName%22%3A%22Murnane%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-04-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOPTICA.5.000479%22%2C%22ISSN%22%3A%222334-2536%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doptica-5-4-479%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A04Z%22%7D%7D%2C%7B%22key%22%3A%22PLXAI34F%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Esashi%20et%20al.%22%2C%22parsedDate%22%3A%222018-12-24%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BEsashi%2C%20Y.%2C%20Liao%2C%20C.-T.%2C%20Wang%2C%20B.%2C%20Brooks%2C%20N.%2C%20Dorney%2C%20K.%20M.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20Kapteyn%2C%20H.%2C%20Adams%2C%20D.%2C%20%26amp%3B%20Murnane%2C%20M.%20%282018%29.%20Ptychographic%20amplitude%20and%20phase%20reconstruction%20of%20bichromatic%20vortex%20beams.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B26%26lt%3B%5C%2Fi%26gt%3B%2826%29%2C%2034007.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.26.034007%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.26.034007%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ptychographic%20amplitude%20and%20phase%20reconstruction%20of%20bichromatic%20vortex%20beams%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Esashi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.-T.%22%2C%22lastName%22%3A%22Liao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Brooks%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%20M.%22%2C%22lastName%22%3A%22Dorney%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Kapteyn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Adams%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Murnane%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-12-24%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.26.034007%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-26-26-34007%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A04Z%22%7D%7D%2C%7B%22key%22%3A%22TSYKA9KN%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Garcia%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BGarcia%2C%20C.%2C%20Trendafilova%2C%20I.%2C%20Guzman%20De%20Villoria%2C%20R.%2C%20%26amp%3B%20Sanchez%20Del%20Rio%2C%20J.%20%282018%29.%20Self-powered%20pressure%20sensor%20based%20on%20the%20triboelectric%20effect%20and%20its%20analysis%20using%20dynamic%20mechanical%20analysis.%20%26lt%3Bi%26gt%3BNano%20Energy%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B50%26lt%3B%5C%2Fi%26gt%3B%2C%20401%26%23×2013%3B409.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.nanoen.2018.05.046%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.nanoen.2018.05.046%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Self-powered%20pressure%20sensor%20based%20on%20the%20triboelectric%20effect%20and%20its%20analysis%20using%20dynamic%20mechanical%20analysis%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cristobal%22%2C%22lastName%22%3A%22Garcia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Irina%22%2C%22lastName%22%3A%22Trendafilova%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberto%22%2C%22lastName%22%3A%22Guzman%20De%20Villoria%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jose%22%2C%22lastName%22%3A%22Sanchez%20Del%20Rio%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2208%5C%2F2018%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.nanoen.2018.05.046%22%2C%22ISSN%22%3A%2222112855%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS2211285518303628%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A24%3A00Z%22%7D%7D%2C%7B%22key%22%3A%22D9WTIXJW%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gobet%20et%20al.%22%2C%22parsedDate%22%3A%222018-12-10%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BGobet%2C%20F.%2C%20Comet%2C%20M.%2C%20Marqu%26%23xE8%3Bs%2C%20J.-R.%2C%20M%26%23xE9%3Bot%2C%20V.%2C%20Raymond%2C%20X.%2C%20Versteegen%2C%20M.%2C%20Henares%2C%20J.-L.%2C%20%26amp%3B%20Morice%2C%20O.%20%282018%29.%20Signatures%20of%20fluid%20and%20kinetic%20properties%20in%20the%20energy%20distributions%20of%20multicharged%20Ta%20ions%20from%20nanosecond-laser-heated%20plasma.%20%26lt%3Bi%26gt%3BPhysical%20Review%20E%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B98%26lt%3B%5C%2Fi%26gt%3B%286%29%2C%20063202.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevE.98.063202%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevE.98.063202%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Signatures%20of%20fluid%20and%20kinetic%20properties%20in%20the%20energy%20distributions%20of%20multicharged%20Ta%20ions%20from%20nanosecond-laser-heated%20plasma%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Gobet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Comet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-R.%22%2C%22lastName%22%3A%22Marqu%5Cu00e8s%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22M%5Cu00e9ot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22X.%22%2C%22lastName%22%3A%22Raymond%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Versteegen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-L.%22%2C%22lastName%22%3A%22Henares%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Morice%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-12-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevE.98.063202%22%2C%22ISSN%22%3A%222470-0045%2C%202470-0053%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevE.98.063202%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A41Z%22%7D%7D%2C%7B%22key%22%3A%22P7YMRSNG%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Herrera%20Diez%20et%20al.%22%2C%22parsedDate%22%3A%222018-08-17%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BHerrera%20Diez%2C%20L.%2C%20Jeudy%2C%20V.%2C%20Durin%2C%20G.%2C%20Casiraghi%2C%20A.%2C%20Liu%2C%20Y.%20T.%2C%20Voto%2C%20M.%2C%20Agnus%2C%20G.%2C%20Bouville%2C%20D.%2C%20Vila%2C%20L.%2C%20Langer%2C%20J.%2C%20Ocker%2C%20B.%2C%20Lopez-Diaz%2C%20L.%2C%20%26amp%3B%20Ravelosona%2C%20D.%20%282018%29.%20Wire%20edge%20dependent%20magnetic%20domain%20wall%20creep.%20%26lt%3Bi%26gt%3BPhysical%20Review%20B%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B98%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%20054417.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.98.054417%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.98.054417%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Wire%20edge%20dependent%20magnetic%20domain%20wall%20creep%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Herrera%20Diez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Jeudy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Durin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Casiraghi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%20T.%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Voto%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Agnus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Bouville%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Vila%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Langer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Ocker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Lopez-Diaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Ravelosona%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-8-17%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.98.054417%22%2C%22ISSN%22%3A%222469-9950%2C%202469-9969%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevB.98.054417%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A01Z%22%7D%7D%2C%7B%22key%22%3A%22BFHHTYHQ%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Huang%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BHuang%2C%20P.-C.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20Huang%2C%20J.-T.%2C%20Huang%2C%20P.-Y.%2C%20Lu%2C%20C.-H.%2C%20Rego%2C%20L.%2C%20Hickstein%2C%20D.%20D.%2C%20Ellis%2C%20J.%20L.%2C%20Jaron-Becker%2C%20A.%2C%20Becker%2C%20A.%2C%20Yang%2C%20S.-D.%2C%20Durfee%2C%20C.%20G.%2C%20Plaja%2C%20L.%2C%20Kapteyn%2C%20H.%20C.%2C%20Murnane%2C%20M.%20M.%2C%20Kung%2C%20A.%20H.%2C%20%26amp%3B%20Chen%2C%20M.-C.%20%282018%29.%20Polarization%20control%20of%20isolated%20high-harmonic%20pulses.%20%26lt%3Bi%26gt%3BNature%20Photonics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B12%26lt%3B%5C%2Fi%26gt%3B%286%29%2C%20349%26%23×2013%3B354.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41566-018-0145-0%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41566-018-0145-0%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Polarization%20control%20of%20isolated%20high-harmonic%20pulses%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pei-Chi%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jen-Ting%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Po-Yao%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chih-Hsuan%22%2C%22lastName%22%3A%22Lu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%22%2C%22lastName%22%3A%22Rego%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20D.%22%2C%22lastName%22%3A%22Hickstein%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennifer%20L.%22%2C%22lastName%22%3A%22Ellis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Agnieszka%22%2C%22lastName%22%3A%22Jaron-Becker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Becker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shang-Da%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%20G.%22%2C%22lastName%22%3A%22Durfee%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henry%20C.%22%2C%22lastName%22%3A%22Kapteyn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaret%20M.%22%2C%22lastName%22%3A%22Murnane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20H.%22%2C%22lastName%22%3A%22Kung%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ming-Chang%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%226%5C%2F2018%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41566-018-0145-0%22%2C%22ISSN%22%3A%221749-4885%2C%201749-4893%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41566-018-0145-0%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A23%3A50Z%22%7D%7D%2C%7B%22key%22%3A%224CCZN4YH%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Karnad%20et%20al.%22%2C%22parsedDate%22%3A%222018-10-03%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BKarnad%2C%20G.%20V.%2C%20Freimuth%2C%20F.%2C%20Martinez%2C%20E.%2C%20Lo%20Conte%2C%20R.%2C%20Gubbiotti%2C%20G.%2C%20Schulz%2C%20T.%2C%20Senz%2C%20S.%2C%20Ocker%2C%20B.%2C%20Mokrousov%2C%20Y.%2C%20%26amp%3B%20Kl%26%23xE4%3Bui%2C%20M.%20%282018%29.%20Modification%20of%20Dzyaloshinskii-Moriya-Interaction-Stabilized%20Domain%20Wall%20Chirality%20by%20Driving%20Currents.%20%26lt%3Bi%26gt%3BPhysical%20Review%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B121%26lt%3B%5C%2Fi%26gt%3B%2814%29%2C%20147203.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.121.147203%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.121.147203%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Modification%20of%20Dzyaloshinskii-Moriya-Interaction-Stabilized%20Domain%20Wall%20Chirality%20by%20Driving%20Currents%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%5Cu2009V.%22%2C%22lastName%22%3A%22Karnad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Freimuth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Martinez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Lo%20Conte%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Gubbiotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Schulz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Senz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Ocker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Mokrousov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Kl%5Cu00e4ui%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-10-3%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevLett.121.147203%22%2C%22ISSN%22%3A%220031-9007%2C%201079-7114%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevLett.121.147203%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A23Z%22%7D%7D%2C%7B%22key%22%3A%229TZJNL4E%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kifle%20et%20al.%22%2C%22parsedDate%22%3A%222018-10-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BKifle%2C%20E.%2C%20Loiko%2C%20P.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20Romero%2C%20C.%2C%20R%26%23xF3%3Bdenas%2C%20A.%2C%20Choi%2C%20S.%20Y.%2C%20Bae%2C%20J.%20E.%2C%20Rotermund%2C%20F.%2C%20Zakharov%2C%20V.%2C%20Veniaminov%2C%20A.%2C%20Aguil%26%23xF3%3B%2C%20M.%2C%20D%26%23xED%3Baz%2C%20F.%2C%20Griebner%2C%20U.%2C%20Petrov%2C%20V.%2C%20%26amp%3B%20Mateos%2C%20X.%20%282018%29.%20Passively%20Q-switched%20femtosecond-laser-written%20thulium%20waveguide%20laser%20based%20on%20evanescent%20field%20interaction%20with%20carbon%20nanotubes.%20%26lt%3Bi%26gt%3BPhotonics%20Research%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B6%26lt%3B%5C%2Fi%26gt%3B%2810%29%2C%20971.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FPRJ.6.000971%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FPRJ.6.000971%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Passively%20Q-switched%20femtosecond-laser-written%20thulium%20waveguide%20laser%20based%20on%20evanescent%20field%20interaction%20with%20carbon%20nanotubes%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esrom%22%2C%22lastName%22%3A%22Kifle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pavel%22%2C%22lastName%22%3A%22Loiko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20Rodr%5Cu00edguez%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Air%5Cu00e1n%22%2C%22lastName%22%3A%22R%5Cu00f3denas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sun%20Yung%22%2C%22lastName%22%3A%22Choi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ji%20Eun%22%2C%22lastName%22%3A%22Bae%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabian%22%2C%22lastName%22%3A%22Rotermund%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Viktor%22%2C%22lastName%22%3A%22Zakharov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrey%22%2C%22lastName%22%3A%22Veniaminov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Magdalena%22%2C%22lastName%22%3A%22Aguil%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesc%22%2C%22lastName%22%3A%22D%5Cu00edaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Uwe%22%2C%22lastName%22%3A%22Griebner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valentin%22%2C%22lastName%22%3A%22Petrov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Mateos%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-10-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FPRJ.6.000971%22%2C%22ISSN%22%3A%222327-9125%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dprj-6-10-971%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A11Z%22%7D%7D%2C%7B%22key%22%3A%229AI2SZAZ%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kifle%20et%20al.%22%2C%22parsedDate%22%3A%222018-11-12%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BKifle%2C%20E.%2C%20Loiko%2C%20P.%2C%20Romero%2C%20C.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20R%26%23xF3%3Bdenas%2C%20A.%2C%20Jambunathan%2C%20V.%2C%20Zakharov%2C%20V.%2C%20Veniaminov%2C%20A.%2C%20Lucianetti%2C%20A.%2C%20Mocek%2C%20T.%2C%20Aguil%26%23xF3%3B%2C%20M.%2C%20D%26%23xED%3Baz%2C%20F.%2C%20Griebner%2C%20U.%2C%20Petrov%2C%20V.%2C%20%26amp%3B%20Mateos%2C%20X.%20%282018%29.%20Fs-laser-written%20erbium-doped%20double%20tungstate%20waveguide%20laser.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B26%26lt%3B%5C%2Fi%26gt%3B%2823%29%2C%2030826.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.26.030826%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.26.030826%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Fs-laser-written%20erbium-doped%20double%20tungstate%20waveguide%20laser%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esrom%22%2C%22lastName%22%3A%22Kifle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pavel%22%2C%22lastName%22%3A%22Loiko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20Rodr%5Cu00edguez%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Air%5Cu00e1n%22%2C%22lastName%22%3A%22R%5Cu00f3denas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Venkatesan%22%2C%22lastName%22%3A%22Jambunathan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Viktor%22%2C%22lastName%22%3A%22Zakharov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrey%22%2C%22lastName%22%3A%22Veniaminov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Lucianetti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tomas%22%2C%22lastName%22%3A%22Mocek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Magdalena%22%2C%22lastName%22%3A%22Aguil%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesc%22%2C%22lastName%22%3A%22D%5Cu00edaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Uwe%22%2C%22lastName%22%3A%22Griebner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valentin%22%2C%22lastName%22%3A%22Petrov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Mateos%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-11-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.26.030826%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-26-23-30826%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22VZ6PLHSC%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22L%5Cu00f3pez-Zubieta%20et%20al.%22%2C%22parsedDate%22%3A%222018-03-05%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BL%26%23xF3%3Bpez-Zubieta%2C%20B.%20A.%2C%20Jarque%2C%20E.%20C.%2C%20Sola%2C%20%26%23xCD%3B.%20J.%2C%20%26amp%3B%20Roman%2C%20J.%20S.%20%282018%29.%20Theoretical%20analysis%20of%20single-cycle%20self-compression%20of%20near%20infrared%20pulses%20using%20high-spatial%20modes%20in%20capillary%20fibers.%20%26lt%3Bi%26gt%3BOptics%20Express%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B26%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%206345.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.26.006345%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.26.006345%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Theoretical%20analysis%20of%20single-cycle%20self-compression%20of%20near%20infrared%20pulses%20using%20high-spatial%20modes%20in%20capillary%20fibers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Boris%20A.%22%2C%22lastName%22%3A%22L%5Cu00f3pez-Zubieta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Enrique%20Conejero%22%2C%22lastName%22%3A%22Jarque%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%20San%22%2C%22lastName%22%3A%22Roman%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-03-05%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.26.006345%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-26-5-6345%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A58Z%22%7D%7D%2C%7B%22key%22%3A%22AT9PXG9G%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22L%5Cu00f3pez-Zubieta%20et%20al.%22%2C%22parsedDate%22%3A%222018-11-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BL%26%23xF3%3Bpez-Zubieta%2C%20B.%20A.%2C%20Jarque%2C%20E.%20C.%2C%20Sola%2C%20%26%23xCD%3B.%20J.%2C%20%26amp%3B%20Roman%2C%20J.%20S.%20%282018%29.%20Spatiotemporal-dressed%20optical%20solitons%20in%20hollow-core%20capillaries.%20%26lt%3Bi%26gt%3BOSA%20Continuum%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B1%26lt%3B%5C%2Fi%26gt%3B%283%29%2C%20930.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOSAC.1.000930%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOSAC.1.000930%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spatiotemporal-dressed%20optical%20solitons%20in%20hollow-core%20capillaries%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Boris%20A.%22%2C%22lastName%22%3A%22L%5Cu00f3pez-Zubieta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Enrique%20Conejero%22%2C%22lastName%22%3A%22Jarque%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%20San%22%2C%22lastName%22%3A%22Roman%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-11-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOSAC.1.000930%22%2C%22ISSN%22%3A%222578-7519%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dosac-1-3-930%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A07Z%22%7D%7D%2C%7B%22key%22%3A%22EXUVH2B3%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nasseri%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BNasseri%2C%20S.%20A.%2C%20Martinez%2C%20E.%2C%20%26amp%3B%20Durin%2C%20G.%20%282018%29.%20Collective%20coordinate%20descriptions%20of%20magnetic%20domain%20wall%20motion%20in%20perpendicularly%20magnetized%20nanostructures%20under%20the%20application%20of%20in-plane%20fields.%20%26lt%3Bi%26gt%3BJournal%20of%20Magnetism%20and%20Magnetic%20Materials%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B468%26lt%3B%5C%2Fi%26gt%3B%2C%2025%26%23×2013%3B43.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jmmm.2018.07.059%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jmmm.2018.07.059%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Collective%20coordinate%20descriptions%20of%20magnetic%20domain%20wall%20motion%20in%20perpendicularly%20magnetized%20nanostructures%20under%20the%20application%20of%20in-plane%20fields%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20Ali%22%2C%22lastName%22%3A%22Nasseri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Martinez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gianfranco%22%2C%22lastName%22%3A%22Durin%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2212%5C%2F2018%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.jmmm.2018.07.059%22%2C%22ISSN%22%3A%2203048853%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0304885318309259%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A10Z%22%7D%7D%2C%7B%22key%22%3A%223R8P6LW9%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Neyra%20et%20al.%22%2C%22parsedDate%22%3A%222018-03-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BNeyra%2C%20E.%2C%20Videla%2C%20F.%2C%20Ciappina%2C%20M.%20F.%2C%20P%26%23xE9%3Brez-Hern%26%23xE1%3Bndez%2C%20J.%20A.%2C%20Roso%2C%20L.%2C%20Lewenstein%2C%20M.%2C%20%26amp%3B%20Torchia%2C%20G.%20A.%20%282018%29.%20High-order%20harmonic%20generation%20driven%20by%20inhomogeneous%20plasmonics%20fields%20spatially%20bounded%3A%20influence%20on%20the%20cut-off%20law.%20%26lt%3Bi%26gt%3BJournal%20of%20Optics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B20%26lt%3B%5C%2Fi%26gt%3B%283%29%2C%20034002.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2040-8986%5C%2Faaa6f7%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2040-8986%5C%2Faaa6f7%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22High-order%20harmonic%20generation%20driven%20by%20inhomogeneous%20plasmonics%20fields%20spatially%20bounded%3A%20influence%20on%20the%20cut-off%20law%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E%22%2C%22lastName%22%3A%22Neyra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F%22%2C%22lastName%22%3A%22Videla%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%20F%22%2C%22lastName%22%3A%22Ciappina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%20A%22%2C%22lastName%22%3A%22P%5Cu00e9rez-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%22%2C%22lastName%22%3A%22Roso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Lewenstein%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G%20A%22%2C%22lastName%22%3A%22Torchia%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-03-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F2040-8986%5C%2Faaa6f7%22%2C%22ISSN%22%3A%222040-8978%2C%202040-8986%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F2040-8986%5C%2Faaa6f7%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A28%3A14Z%22%7D%7D%2C%7B%22key%22%3A%22D8AV8UKD%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Neyra%20et%20al.%22%2C%22parsedDate%22%3A%222018-07-03%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BNeyra%2C%20E.%2C%20Videla%2C%20F.%2C%20Ciappina%2C%20M.%20F.%2C%20P%26%23xE9%3Brez-Hern%26%23xE1%3Bndez%2C%20J.%20A.%2C%20Roso%2C%20L.%2C%20%26amp%3B%20Torchia%2C%20G.%20A.%20%282018%29.%20Synthesis%20of%20ultrashort%20laser%20pulses%20for%20high-order%20harmonic%20generation.%20%26lt%3Bi%26gt%3BPhysical%20Review%20A%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B98%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%20013403.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevA.98.013403%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevA.98.013403%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Synthesis%20of%20ultrashort%20laser%20pulses%20for%20high-order%20harmonic%20generation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Neyra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Videla%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20F.%22%2C%22lastName%22%3A%22Ciappina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20A.%22%2C%22lastName%22%3A%22P%5Cu00e9rez-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Roso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%20A.%22%2C%22lastName%22%3A%22Torchia%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-7-3%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevA.98.013403%22%2C%22ISSN%22%3A%222469-9926%2C%202469-9934%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevA.98.013403%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A22Z%22%7D%7D%2C%7B%22key%22%3A%22Q7J7ETV2%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nie%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BNie%2C%20W.%2C%20Romero%2C%20C.%2C%20Lu%2C%20Q.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20%26amp%3B%20Chen%2C%20F.%20%282018%29.%20Implementation%20of%20nearly%20single-mode%20second%20harmonic%20generation%20by%20using%20a%20femtosecond%20laser%20written%20waveguiding%20structure%20in%20KTiOPO4%20nonlinear%20crystal.%20%26lt%3Bi%26gt%3BOptical%20Materials%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B84%26lt%3B%5C%2Fi%26gt%3B%2C%20531%26%23×2013%3B535.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.optmat.2018.07.057%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.optmat.2018.07.057%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Implementation%20of%20nearly%20single-mode%20second%20harmonic%20generation%20by%20using%20a%20femtosecond%20laser%20written%20waveguiding%20structure%20in%20KTiOPO4%20nonlinear%20crystal%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Weijie%22%2C%22lastName%22%3A%22Nie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qingming%22%2C%22lastName%22%3A%22Lu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20Rodr%5Cu00edguez%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2210%5C%2F2018%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.optmat.2018.07.057%22%2C%22ISSN%22%3A%2209253467%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0925346718305196%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A32%3A28Z%22%7D%7D%2C%7B%22key%22%3A%226P3TD2NC%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Pedrinazzi%20et%20al.%22%2C%22parsedDate%22%3A%222018-01-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BPedrinazzi%2C%20P.%2C%20Caridad%2C%20J.%20M.%2C%20Mackenzie%2C%20D.%20M.%20A.%2C%20Pizzocchero%2C%20F.%2C%20Gammelgaard%2C%20L.%2C%20Jessen%2C%20B.%20S.%2C%20Sordan%2C%20R.%2C%20Booth%2C%20T.%20J.%2C%20%26amp%3B%20B%26%23xF8%3Bggild%2C%20P.%20%282018%29.%20High-quality%20graphene%20flakes%20exfoliated%20on%20a%20flat%20hydrophobic%20polymer.%20%26lt%3Bi%26gt%3BApplied%20Physics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B112%26lt%3B%5C%2Fi%26gt%3B%283%29%2C%20033101.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5009168%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5009168%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22High-quality%20graphene%20flakes%20exfoliated%20on%20a%20flat%20hydrophobic%20polymer%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paolo%22%2C%22lastName%22%3A%22Pedrinazzi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20M.%22%2C%22lastName%22%3A%22Caridad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20M.%20A.%22%2C%22lastName%22%3A%22Mackenzie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Filippo%22%2C%22lastName%22%3A%22Pizzocchero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lene%22%2C%22lastName%22%3A%22Gammelgaard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bjarke%20S.%22%2C%22lastName%22%3A%22Jessen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roman%22%2C%22lastName%22%3A%22Sordan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20J.%22%2C%22lastName%22%3A%22Booth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22B%5Cu00f8ggild%22%7D%5D%2C%22abstractNote%22%3A%22We%20show%20that%20graphene%20supported%20on%20a%20hydrophobic%20and%20flat%20polymer%20surface%20results%20in%20flakes%20with%20extremely%20low%20doping%20and%20strain%20as%20assessed%20by%20their%20Raman%20spectroscopic%20characteristics.%20We%20exemplify%20this%20technique%20by%20micromechanical%20exfoliation%20of%20graphene%20on%20flat%20poly%28methylmethacrylate%29%20layers%20and%20demonstrate%20Raman%20peak%20intensity%20ratios%20I%282D%29%5C%2FI%28G%29%20approaching%2010%2C%20similar%20to%20pristine%20freestanding%20graphene.%20We%20verify%20that%20these%20features%20are%20not%20an%20artifact%20of%20optical%20interference%20effects%20occurring%20at%20the%20substrate%3A%20they%20are%20similarly%20observed%20when%20varying%20the%20substrate%20thickness%20and%20are%20maintained%20when%20the%20environment%20of%20the%20graphene%20flake%20is%20completely%20changed%2C%20by%20encapsulating%20preselected%20flakes%20between%20hexagonal%20boron%20nitride%20layers.%20The%20exfoliation%20of%20clean%2C%20pristine%20graphene%20layers%20directly%20on%20flat%20polymer%20substrates%20enables%20high%20performance%2C%20supported%2C%20and%20non-encapsulated%20graphene%20devices%20for%20flexible%20and%20transparent%20optoelectronic%20studies.%20We%20additionally%20show%20that%20the%20access%20to%20a%20clean%20and%20supported%20graphene%20source%20leads%20to%20high-quality%20van%20der%20Waals%20heterostructures%20and%20devices%20with%20reproducible%20carrier%20mobilities%20exceeding%2050%5Cu2009000%5Cu2009cm2%20V%5Cu22121%5Cu2009s%5Cu22121%20at%20room%20temperature.%22%2C%22date%22%3A%222018-01-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5009168%22%2C%22ISSN%22%3A%220003-6951%2C%201077-3118%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fapl%5C%2Farticle%5C%2F112%5C%2F3%5C%2F033101%5C%2F36055%5C%2FHigh-quality-graphene-flakes-exfoliated-on-a-flat%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A56Z%22%7D%7D%2C%7B%22key%22%3A%223UXE6MTF%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Pic%5Cu00f3n%20et%20al.%22%2C%22parsedDate%22%3A%222018-10-26%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BPic%26%23xF3%3Bn%2C%20A.%2C%20Bostedt%2C%20C.%2C%20Hern%26%23xE1%3Bndez-Garc%26%23xED%3Ba%2C%20C.%2C%20%26amp%3B%20Plaja%2C%20L.%20%282018%29.%20Auger-induced%20charge%20migration.%20%26lt%3Bi%26gt%3BPhysical%20Review%20A%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B98%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20043433.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevA.98.043433%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevA.98.043433%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Auger-induced%20charge%20migration%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Pic%5Cu00f3n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Bostedt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Plaja%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-10-26%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevA.98.043433%22%2C%22ISSN%22%3A%222469-9926%2C%202469-9934%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevA.98.043433%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22GTIN6RYG%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ren%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRen%2C%20Y.%2C%20Zhang%2C%20L.%2C%20Xing%2C%20H.%2C%20Romero%2C%20C.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20%26amp%3B%20Chen%2C%20F.%20%282018%29.%20Cladding%20waveguide%20splitters%20fabricated%20by%20femtosecond%20laser%20inscription%20in%20Ti%3ASapphire%20crystal.%20%26lt%3Bi%26gt%3BOptics%20%26amp%3B%20Laser%20Technology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B103%26lt%3B%5C%2Fi%26gt%3B%2C%2082%26%23×2013%3B88.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.optlastec.2018.01.021%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.optlastec.2018.01.021%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Cladding%20waveguide%20splitters%20fabricated%20by%20femtosecond%20laser%20inscription%20in%20Ti%3ASapphire%20crystal%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yingying%22%2C%22lastName%22%3A%22Ren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Limu%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hongguang%22%2C%22lastName%22%3A%22Xing%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2207%5C%2F2018%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.optlastec.2018.01.021%22%2C%22ISSN%22%3A%2200303992%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0030399217313282%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22KNP8PXHX%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ren%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRen%2C%20Y.%2C%20Zhang%2C%20L.%2C%20Romero%2C%20C.%2C%20V%26%23xE1%3Bzquez%20De%20Aldana%2C%20J.%20R.%2C%20%26amp%3B%20Chen%2C%20F.%20%282018%29.%20Femtosecond%20laser%20irradiation%20on%20Nd%3AYAG%20crystal%3A%20Surface%20ablation%20and%20high-spatial-frequency%20nanograting.%20%26lt%3Bi%26gt%3BApplied%20Surface%20Science%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B441%26lt%3B%5C%2Fi%26gt%3B%2C%20372%26%23×2013%3B380.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.apsusc.2018.01.217%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.apsusc.2018.01.217%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Femtosecond%20laser%20irradiation%20on%20Nd%3AYAG%20crystal%3A%20Surface%20ablation%20and%20high-spatial-frequency%20nanograting%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yingying%22%2C%22lastName%22%3A%22Ren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Limu%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javier%20R.%22%2C%22lastName%22%3A%22V%5Cu00e1zquez%20De%20Aldana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2205%5C%2F2018%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.apsusc.2018.01.217%22%2C%22ISSN%22%3A%2201694332%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0169433218302356%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A27%3A20Z%22%7D%7D%2C%7B%22key%22%3A%22PWHUGZHE%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rodr%5Cu00edguez-Beltr%5Cu00e1n%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRodr%26%23xED%3Bguez-Beltr%26%23xE1%3Bn%2C%20R.%20I.%2C%20Hernandez%2C%20M.%2C%20Paszkiewicz%2C%20S.%2C%20Szymczyk%2C%20A.%2C%20Ros%26%23×142%3Baniec%2C%20Z.%2C%20Ezquerra%2C%20T.%20A.%2C%20Castillejo%2C%20M.%2C%20Moreno%2C%20P.%2C%20%26amp%3B%20Rebollar%2C%20E.%20%282018%29.%20Laser%20induced%20periodic%20surface%20structures%20formation%20by%20nanosecond%20laser%20irradiation%20of%20poly%20%28ethylene%20terephthalate%29%20reinforced%20with%20Expanded%20Graphite.%20%26lt%3Bi%26gt%3BApplied%20Surface%20Science%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B436%26lt%3B%5C%2Fi%26gt%3B%2C%201193%26%23×2013%3B1199.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.apsusc.2017.12.147%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.apsusc.2017.12.147%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Laser%20induced%20periodic%20surface%20structures%20formation%20by%20nanosecond%20laser%20irradiation%20of%20poly%20%28ethylene%20terephthalate%29%20reinforced%20with%20Expanded%20Graphite%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ren%5Cu00e9%20I.%22%2C%22lastName%22%3A%22Rodr%5Cu00edguez-Beltr%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margarita%22%2C%22lastName%22%3A%22Hernandez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sandra%22%2C%22lastName%22%3A%22Paszkiewicz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%22%2C%22lastName%22%3A%22Szymczyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zbigniew%22%2C%22lastName%22%3A%22Ros%5Cu0142aniec%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tiberio%20A.%22%2C%22lastName%22%3A%22Ezquerra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marta%22%2C%22lastName%22%3A%22Castillejo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pablo%22%2C%22lastName%22%3A%22Moreno%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esther%22%2C%22lastName%22%3A%22Rebollar%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2204%5C%2F2018%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.apsusc.2017.12.147%22%2C%22ISSN%22%3A%2201694332%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0169433217337352%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A29%3A20Z%22%7D%7D%2C%7B%22key%22%3A%22DZDZJMEJ%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Roger%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BRoger%2C%20T.%2C%20Pancin%2C%20J.%2C%20Grinyer%2C%20G.%20F.%2C%20Mauss%2C%20B.%2C%20Laffoley%2C%20A.%20T.%2C%20Rosier%2C%20P.%2C%20Alvarez-Pol%2C%20H.%2C%20Babo%2C%20M.%2C%20Blank%2C%20B.%2C%20Caama%26%23xF1%3Bo%2C%20M.%2C%20Ceruti%2C%20S.%2C%20Daemen%2C%20J.%2C%20Damoy%2C%20S.%2C%20Duclos%2C%20B.%2C%20Fern%26%23xE1%3Bndez-Dom%26%23xED%3Bnguez%2C%20B.%2C%20Flavigny%2C%20F.%2C%20Giovinazzo%2C%20J.%2C%20Goigoux%2C%20T.%2C%20Henares%2C%20J.%20L.%2C%20%26%23×2026%3B%20Yang%2C%20J.%20C.%20%282018%29.%20Demonstrator%20Detection%20System%20for%20the%20Active%20Target%20and%20Time%20Projection%20Chamber%20%28ACTAR%20TPC%29%20project.%20%26lt%3Bi%26gt%3BNuclear%20Instruments%20and%20Methods%20in%20Physics%20Research%20Section%20A%3A%20Accelerators%2C%20Spectrometers%2C%20Detectors%20and%20Associated%20Equipment%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B895%26lt%3B%5C%2Fi%26gt%3B%2C%20126%26%23×2013%3B134.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.nima.2018.04.003%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.nima.2018.04.003%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Demonstrator%20Detection%20System%20for%20the%20Active%20Target%20and%20Time%20Projection%20Chamber%20%28ACTAR%20TPC%29%20project%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Roger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Pancin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.F.%22%2C%22lastName%22%3A%22Grinyer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Mauss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.T.%22%2C%22lastName%22%3A%22Laffoley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Rosier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Alvarez-Pol%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Babo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Blank%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Caama%5Cu00f1o%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Ceruti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Daemen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Damoy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Duclos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Fern%5Cu00e1ndez-Dom%5Cu00ednguez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Flavigny%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Giovinazzo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Goigoux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.L.%22%2C%22lastName%22%3A%22Henares%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Konczykowski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Marchi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Lebertre%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Lecesne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Legeard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Maugeais%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Minier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Osmond%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.L.%22%2C%22lastName%22%3A%22Pedroza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Pibernat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Poleshchuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.C.%22%2C%22lastName%22%3A%22Pollacco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Raabe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Raine%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Renzi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Saillant%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22S%5Cu00e9n%5Cu00e9cal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Sizun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Suzuki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.A.%22%2C%22lastName%22%3A%22Swartz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Wouters%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Wittwer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.C.%22%2C%22lastName%22%3A%22Yang%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2207%5C%2F2018%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.nima.2018.04.003%22%2C%22ISSN%22%3A%2201689002%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0168900218304777%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A25%3A52Z%22%7D%7D%2C%7B%22key%22%3A%228JA8PRXQ%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22S%5Cu00e1nchez-Tejerina%20et%20al.%22%2C%22parsedDate%22%3A%222018-06-14%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BS%26%23xE1%3Bnchez-Tejerina%2C%20L.%2C%20Alejos%2C%20%26%23xD3%3B.%2C%20Raposo%2C%20V.%2C%20%26amp%3B%20Mart%26%23xED%3Bnez%2C%20E.%20%282018%29.%20Current-driven%20domain%20wall%20motion%20along%20ferromagnetic%20strips%20with%20periodically-modulated%20perpendicular%20anisotropy.%20%26lt%3Bi%26gt%3BJournal%20of%20Applied%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B123%26lt%3B%5C%2Fi%26gt%3B%2822%29%2C%20223904.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5036601%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5036601%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Current-driven%20domain%20wall%20motion%20along%20ferromagnetic%20strips%20with%20periodically-modulated%20perpendicular%20anisotropy%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22S%5Cu00e1nchez-Tejerina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00d3scar%22%2C%22lastName%22%3A%22Alejos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V%5Cu00edctor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Mart%5Cu00ednez%22%7D%5D%2C%22abstractNote%22%3A%22The%20dynamics%20of%20magnetic%20domain%20walls%20along%20ferromagnetic%20strips%20with%20spatially%20modulated%20perpendicular%20magnetic%20anisotropy%20are%20theoretically%20studied%20by%20means%20of%20micromagnetic%20simulations.%20Ferromagnetic%20layers%20with%20a%20periodic%20sawtooth%20profile%20of%20the%20anisotropy%20depict%20a%20well-defined%20set%20of%20energy%20minima%20where%20the%20walls%20are%20pinned%20in%20the%20absence%20of%20external%20stimuli%2C%20and%20favor%20the%20unidirectional%20propagation%20of%20domain%20walls.%20The%20performance%20of%20the%20current-driven%20domain%20wall%20motion%20along%20these%20ratchet-like%20systems%20is%20compared%20to%20the%20field-driven%20case.%20Our%20study%20indicates%20that%20the%20current-driven%20domain%20wall%20motion%20exhibits%20significant%20improvements%20with%20respect%20to%20the%20field-driven%20case%20in%20terms%20of%20bit%20shifting%20speed%20and%20storage%20density%2C%20and%20therefore%2C%20it%20is%20suggested%20for%20the%20development%20of%20novel%20devices.%20The%20feasibility%20of%20these%20current-driven%20ratchet%20devices%20is%20studied%20by%20means%20of%20realistic%20micromagnetic%20simulations%20and%20supported%20by%20a%20one-dimensional%20model%20updated%20to%20take%20into%20account%20the%20periodic%20sawthooth%20anisotropy%20profile.%20Finally%2C%20the%20current-driven%20domain%20wall%20motion%20is%20also%20evaluated%20in%20systems%20with%20a%20triangular%20modulation%20of%20the%20anisotropy%20designed%20to%20promote%20the%20bidirectional%20shifting%20of%20a%20series%20of%20walls%2C%20a%20functionality%20that%20cannot%20be%20achieved%20by%20magnetic%20fields.%22%2C%22date%22%3A%222018-06-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5036601%22%2C%22ISSN%22%3A%220021-8979%2C%201089-7550%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fjap%5C%2Farticle%5C%2F123%5C%2F22%5C%2F223904%5C%2F155171%5C%2FCurrent-driven-domain-wall-motion-along%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A33%3A14Z%22%7D%7D%2C%7B%22key%22%3A%226QUS69KW%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22S%5Cu00e1nchez-Tejerina%20et%20al.%22%2C%22parsedDate%22%3A%222018-04-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BS%26%23xE1%3Bnchez-Tejerina%2C%20L.%2C%20Mart%26%23xED%3Bnez%2C%20E.%2C%20Raposo%2C%20V.%2C%20%26amp%3B%20Alejos%2C%20%26%23xD3%3B.%20%282018%29.%20Current-driven%20domain%20wall%20motion%20based%20memory%20devices%3A%20Application%20to%20a%20ratchet%20ferromagnetic%20strip.%20%26lt%3Bi%26gt%3BAIP%20Advances%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B8%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20047302.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4993750%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.4993750%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Current-driven%20domain%20wall%20motion%20based%20memory%20devices%3A%20Application%20to%20a%20ratchet%20ferromagnetic%20strip%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22S%5Cu00e1nchez-Tejerina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Mart%5Cu00ednez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V%5Cu00edctor%22%2C%22lastName%22%3A%22Raposo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00d3scar%22%2C%22lastName%22%3A%22Alejos%22%7D%5D%2C%22abstractNote%22%3A%22Ratchet%20memories%2C%20where%20perpendicular%20magnetocristalline%20anisotropy%20is%20tailored%20so%20as%20to%20precisely%20control%20the%20magnetic%20transitions%2C%20has%20been%20recently%20proven%20to%20be%20a%20feasible%20device%20to%20store%20and%20manipulate%20data%20bits.%20For%20such%20devices%2C%20it%20has%20been%20shown%20that%20the%20current-driven%20regime%20of%20domain%20walls%20can%20improve%20their%20performances%20with%20respect%20to%20the%20field-driven%20one.%20However%2C%20the%20relaxing%20time%20required%20by%20the%20traveling%20domain%20walls%20constitutes%20a%20certain%20drawback%20if%20the%20former%20regime%20is%20considered%2C%20since%20it%20results%20in%20longer%20device%20latencies.%20In%20order%20to%20speed%20up%20the%20bit%20shifting%20procedure%2C%20it%20is%20demonstrated%20here%20that%20the%20application%20of%20a%20current%20of%20inverse%20polarity%20during%20the%20DW%20relaxing%20time%20may%20reduce%20such%20latencies.%20The%20reverse%20current%20must%20be%20sufficiently%20high%20as%20to%20drive%20the%20DW%20to%20the%20equilibrium%20position%20faster%20than%20the%20anisotropy%20slope%20itself%2C%20but%20with%20an%20amplitude%20sufficiently%20low%20as%20to%20avoid%20DW%20backward%20shifting.%20Alternatively%2C%20it%20is%20possible%20to%20use%20such%20a%20reverse%20current%20to%20increase%20the%20proper%20range%20of%20operation%20for%20a%20given%20relaxing%20time%2C%20i.e.%2C%20the%20pair%20of%20values%20of%20the%20current%20amplitude%20and%20pulse%20time%20that%20ensures%20single%20DW%20jumps%20for%20a%20certain%20latency%20time.%22%2C%22date%22%3A%222018-04-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.4993750%22%2C%22ISSN%22%3A%222158-3226%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fadv%5C%2Farticle%5C%2F8%5C%2F4%5C%2F047302%5C%2F1032273%5C%2FCurrent-driven-domain-wall-motion-based-memory%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A34%3A01Z%22%7D%7D%2C%7B%22key%22%3A%22R9HYMYBW%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Shahbazi%20et%20al.%22%2C%22parsedDate%22%3A%222018-12-10%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BShahbazi%2C%20K.%2C%20Hrabec%2C%20A.%2C%20Moretti%2C%20S.%2C%20Ward%2C%20M.%20B.%2C%20Moore%2C%20T.%20A.%2C%20Jeudy%2C%20V.%2C%20Martinez%2C%20E.%2C%20%26amp%3B%20Marrows%2C%20C.%20H.%20%282018%29.%20Magnetic%20properties%20and%20field-driven%20dynamics%20of%20chiral%20domain%20walls%20in%20epitaxial%20Pt%20%5C%2F%20Co%20%5C%2F%20Au%20x%20Pt%201%20%26%23×2212%3B%20x%20trilayers.%20%26lt%3Bi%26gt%3BPhysical%20Review%20B%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B98%26lt%3B%5C%2Fi%26gt%3B%2821%29%2C%20214413.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.98.214413%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.98.214413%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Magnetic%20properties%20and%20field-driven%20dynamics%20of%20chiral%20domain%20walls%20in%20epitaxial%20Pt%20%5C%2F%20Co%20%5C%2F%20Au%20x%20Pt%201%20%5Cu2212%20x%20trilayers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kowsar%22%2C%22lastName%22%3A%22Shahbazi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ale%5Cu0161%22%2C%22lastName%22%3A%22Hrabec%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Simone%22%2C%22lastName%22%3A%22Moretti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20B.%22%2C%22lastName%22%3A%22Ward%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20A.%22%2C%22lastName%22%3A%22Moore%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Jeudy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%22%2C%22lastName%22%3A%22Martinez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%20H.%22%2C%22lastName%22%3A%22Marrows%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-12-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.98.214413%22%2C%22ISSN%22%3A%222469-9950%2C%202469-9969%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevB.98.214413%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A26%3A46Z%22%7D%7D%2C%7B%22key%22%3A%22S8TGPM2S%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Silva%20et%20al.%22%2C%22parsedDate%22%3A%222018-01-15%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSilva%2C%20F.%2C%20Alonso%2C%20B.%2C%20Holgado%2C%20W.%2C%20Romero%2C%20R.%2C%20Rom%26%23xE1%3Bn%2C%20J.%20S.%2C%20Jarque%2C%20E.%20C.%2C%20Koop%2C%20H.%2C%20Pervak%2C%20V.%2C%20Crespo%2C%20H.%2C%20%26amp%3B%20Sola%2C%20%26%23xCD%3B.%20J.%20%282018%29.%20Strategies%20for%20achieving%20intense%20single-cycle%20pulses%20with%20in-line%20post-compression%20setups.%20%26lt%3Bi%26gt%3BOptics%20Letters%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B43%26lt%3B%5C%2Fi%26gt%3B%282%29%2C%20337.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.43.000337%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOL.43.000337%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Strategies%20for%20achieving%20intense%20single-cycle%20pulses%20with%20in-line%20post-compression%20setups%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francisco%22%2C%22lastName%22%3A%22Silva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjam%5Cu00edn%22%2C%22lastName%22%3A%22Alonso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Warein%22%2C%22lastName%22%3A%22Holgado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rosa%22%2C%22lastName%22%3A%22Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%20San%22%2C%22lastName%22%3A%22Rom%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Enrique%20Conejero%22%2C%22lastName%22%3A%22Jarque%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hans%22%2C%22lastName%22%3A%22Koop%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vladimir%22%2C%22lastName%22%3A%22Pervak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Helder%22%2C%22lastName%22%3A%22Crespo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00cd%5Cu00f1igo%20J.%22%2C%22lastName%22%3A%22Sola%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-01-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOL.43.000337%22%2C%22ISSN%22%3A%220146-9592%2C%201539-4794%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Dol-43-2-337%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A24%3A42Z%22%7D%7D%2C%7B%22key%22%3A%2237GURCRL%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Simon%20et%20al.%22%2C%22parsedDate%22%3A%222018-09-13%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BSimon%2C%20E.%2C%20Yanes%2C%20R.%2C%20Khmelevskyi%2C%20S.%2C%20Palot%26%23xE1%3Bs%2C%20K.%2C%20Szunyogh%2C%20L.%2C%20%26amp%3B%20Nowak%2C%20U.%20%282018%29.%20Magnetism%20and%20exchange-bias%20effect%20at%20the%20MnN%5C%2FFe%20interface.%20%26lt%3Bi%26gt%3BPhysical%20Review%20B%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B98%26lt%3B%5C%2Fi%26gt%3B%289%29%2C%20094415.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.98.094415%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.98.094415%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Magnetism%20and%20exchange-bias%20effect%20at%20the%20MnN%5C%2FFe%20interface%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Simon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Yanes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Khmelevskyi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Palot%5Cu00e1s%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Szunyogh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22U.%22%2C%22lastName%22%3A%22Nowak%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-9-13%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.98.094415%22%2C%22ISSN%22%3A%222469-9950%2C%202469-9969%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevB.98.094415%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A30%3A44Z%22%7D%7D%2C%7B%22key%22%3A%22XCC5UFPH%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tarisien%20et%20al.%22%2C%22parsedDate%22%3A%222018%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BTarisien%2C%20M.%2C%20Henares%2C%20J.%20L.%2C%20Baccou%2C%20C.%2C%20Bonnet%2C%20T.%2C%20Boulay%2C%20F.%2C%20Gobet%2C%20F.%2C%20Gugiu%2C%20M.%2C%20Hannachi%2C%20F.%2C%20Kisyov%2C%20S.%2C%20Manailescu%2C%20C.%2C%20Meot%2C%20V.%2C%20Negoita%2C%20F.%2C%20Raymond%2C%20X.%2C%20Revet%2C%20G.%2C%20Tudor%2C%20L.%2C%20%26amp%3B%20Versteegen%2C%20M.%20%282018%29.%20Scintillators%20in%20High-Power%20Laser-Driven%20Experiments.%20%26lt%3Bi%26gt%3BIEEE%20Transactions%20on%20Nuclear%20Science%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B65%26lt%3B%5C%2Fi%26gt%3B%288%29%2C%202216%26%23×2013%3B2219.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTNS.2018.2821906%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTNS.2018.2821906%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Scintillators%20in%20High-Power%20Laser-Driven%20Experiments%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Tarisien%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20L.%22%2C%22lastName%22%3A%22Henares%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Baccou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Bonnet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Boulay%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Gobet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Gugiu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Hannachi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Kisyov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Manailescu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Meot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Negoita%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22X.%22%2C%22lastName%22%3A%22Raymond%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Revet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Tudor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Versteegen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%228%5C%2F2018%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FTNS.2018.2821906%22%2C%22ISSN%22%3A%220018-9499%2C%201558-1578%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F8329543%5C%2F%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A31%3A18Z%22%7D%7D%2C%7B%22key%22%3A%2233TEQ26V%22%2C%22library%22%3A%7B%22id%22%3A8111616%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zurr%5Cu00f3n%20et%20al.%22%2C%22parsedDate%22%3A%222018-05-11%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BZurr%26%23xF3%3Bn%2C%20%26%23xD3%3B.%2C%20Pic%26%23xF3%3Bn%2C%20A.%2C%20%26amp%3B%20Plaja%2C%20L.%20%282018%29.%20Theory%20of%20high-order%20harmonic%20generation%20for%20gapless%20graphene.%20%26lt%3Bi%26gt%3BNew%20Journal%20of%20Physics%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B20%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%20053033.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1367-2630%5C%2Faabec7%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1367-2630%5C%2Faabec7%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Theory%20of%20high-order%20harmonic%20generation%20for%20gapless%20graphene%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00d3scar%22%2C%22lastName%22%3A%22Zurr%5Cu00f3n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Pic%5Cu00f3n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Plaja%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-05-11%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1367-2630%5C%2Faabec7%22%2C%22ISSN%22%3A%221367-2630%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1367-2630%5C%2Faabec7%22%2C%22collections%22%3A%5B%22N7Z8DZV2%22%5D%2C%22dateModified%22%3A%222024-02-02T11%3A24%3A55Z%22%7D%7D%5D%7D
Ajates, J. G., Vázquez De Aldana, J. R., Chen, F., & Ródenas, A. (2018). Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO 3 cladding waveguides. Optical Materials Express, 8(7), 1890. https://doi.org/10.1364/OME.8.001890
Alejos, O., Raposo, V., Sanchez-Tejerina, L., Tomasello, R., Finocchio, G., & Martinez, E. (2018). Current-driven domain wall dynamics in ferromagnetic layers synthetically exchange-coupled by a spacer: A micromagnetic study. Journal of Applied Physics, 123(1), 013901. https://doi.org/10.1063/1.5009739
Alonso, B., Sola, Í. J., & Crespo, H. (2018). Self-calibrating d-scan: measuring ultrashort laser pulses on-target using an arbitrary pulse compressor. Scientific Reports, 8(1), 3264. https://doi.org/10.1038/s41598-018-21701-6
Alonso, B., Pérez-Vizcaíno, J., Mínguez-Vega, G., & Sola, Í. J. (2018). Tailoring the spatio-temporal distribution of diffractive focused ultrashort pulses through pulse shaping. Optics Express, 26(8), 10762. https://doi.org/10.1364/OE.26.010762
Caridad, J. M., Power, S. R., Lotz, M. R., Shylau, A. A., Thomsen, J. D., Gammelgaard, L., Booth, T. J., Jauho, A.-P., & Bøggild, P. (2018). Conductance quantization suppression in the quantum Hall regime. Nature Communications, 9(1), 659. https://doi.org/10.1038/s41467-018-03064-8
Caridad, J. M., Calogero, G., Pedrinazzi, P., Santos, J. E., Impellizzeri, A., Gunst, T., Booth, T. J., Sordan, R., Bøggild, P., & Brandbyge, M. (2018). A Graphene-Edge Ferroelectric Molecular Switch. Nano Letters, 18(8), 4675–4683. https://doi.org/10.1021/acs.nanolett.8b00797
Caridad, J. M., Winters, S., McCloskey, D., Duesberg, G. S., Donegan, J. F., & Krstić, V. (2018). Control of the plasmonic near-field in metallic nanohelices. Nanotechnology, 29(32), 325204. https://doi.org/10.1088/1361-6528/aac666
Conejero Jarque, E., San Roman, J., Silva, F., Romero, R., Holgado, W., Gonzalez-Galicia, M. A., Alonso, B., Sola, I. J., & Crespo, H. (2018). Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors. Scientific Reports, 8(1), 2256. https://doi.org/10.1038/s41598-018-20580-1
Ellis, J. L., Dorney, K. M., Hickstein, D. D., Brooks, N. J., Gentry, C., Hernández-García, C., Zusin, D., Shaw, J. M., Nguyen, Q. L., Mancuso, C. A., Matthijs Jansen, G. S., Witte, S., Kapteyn, H. C., & Murnane, M. M. (2018). High harmonics with spatially varying ellipticity. Optica, 5(4), 479. https://doi.org/10.1364/OPTICA.5.000479
Esashi, Y., Liao, C.-T., Wang, B., Brooks, N., Dorney, K. M., Hernández-García, C., Kapteyn, H., Adams, D., & Murnane, M. (2018). Ptychographic amplitude and phase reconstruction of bichromatic vortex beams. Optics Express, 26(26), 34007. https://doi.org/10.1364/OE.26.034007
Garcia, C., Trendafilova, I., Guzman De Villoria, R., & Sanchez Del Rio, J. (2018). Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy, 50, 401–409. https://doi.org/10.1016/j.nanoen.2018.05.046
Gobet, F., Comet, M., Marquès, J.-R., Méot, V., Raymond, X., Versteegen, M., Henares, J.-L., & Morice, O. (2018). Signatures of fluid and kinetic properties in the energy distributions of multicharged Ta ions from nanosecond-laser-heated plasma. Physical Review E, 98(6), 063202. https://doi.org/10.1103/PhysRevE.98.063202
Herrera Diez, L., Jeudy, V., Durin, G., Casiraghi, A., Liu, Y. T., Voto, M., Agnus, G., Bouville, D., Vila, L., Langer, J., Ocker, B., Lopez-Diaz, L., & Ravelosona, D. (2018). Wire edge dependent magnetic domain wall creep. Physical Review B, 98(5), 054417. https://doi.org/10.1103/PhysRevB.98.054417
Huang, P.-C., Hernández-García, C., Huang, J.-T., Huang, P.-Y., Lu, C.-H., Rego, L., Hickstein, D. D., Ellis, J. L., Jaron-Becker, A., Becker, A., Yang, S.-D., Durfee, C. G., Plaja, L., Kapteyn, H. C., Murnane, M. M., Kung, A. H., & Chen, M.-C. (2018). Polarization control of isolated high-harmonic pulses. Nature Photonics, 12(6), 349–354. https://doi.org/10.1038/s41566-018-0145-0
Karnad, G. V., Freimuth, F., Martinez, E., Lo Conte, R., Gubbiotti, G., Schulz, T., Senz, S., Ocker, B., Mokrousov, Y., & Kläui, M. (2018). Modification of Dzyaloshinskii-Moriya-Interaction-Stabilized Domain Wall Chirality by Driving Currents. Physical Review Letters, 121(14), 147203. https://doi.org/10.1103/PhysRevLett.121.147203
Kifle, E., Loiko, P., Vázquez De Aldana, J. R., Romero, C., Ródenas, A., Choi, S. Y., Bae, J. E., Rotermund, F., Zakharov, V., Veniaminov, A., Aguiló, M., Díaz, F., Griebner, U., Petrov, V., & Mateos, X. (2018). Passively Q-switched femtosecond-laser-written thulium waveguide laser based on evanescent field interaction with carbon nanotubes. Photonics Research, 6(10), 971. https://doi.org/10.1364/PRJ.6.000971
Kifle, E., Loiko, P., Romero, C., Vázquez De Aldana, J. R., Ródenas, A., Jambunathan, V., Zakharov, V., Veniaminov, A., Lucianetti, A., Mocek, T., Aguiló, M., Díaz, F., Griebner, U., Petrov, V., & Mateos, X. (2018). Fs-laser-written erbium-doped double tungstate waveguide laser. Optics Express, 26(23), 30826. https://doi.org/10.1364/OE.26.030826
López-Zubieta, B. A., Jarque, E. C., Sola, Í. J., & Roman, J. S. (2018). Theoretical analysis of single-cycle self-compression of near infrared pulses using high-spatial modes in capillary fibers. Optics Express, 26(5), 6345. https://doi.org/10.1364/OE.26.006345
López-Zubieta, B. A., Jarque, E. C., Sola, Í. J., & Roman, J. S. (2018). Spatiotemporal-dressed optical solitons in hollow-core capillaries. OSA Continuum, 1(3), 930. https://doi.org/10.1364/OSAC.1.000930
Nasseri, S. A., Martinez, E., & Durin, G. (2018). Collective coordinate descriptions of magnetic domain wall motion in perpendicularly magnetized nanostructures under the application of in-plane fields. Journal of Magnetism and Magnetic Materials, 468, 25–43. https://doi.org/10.1016/j.jmmm.2018.07.059
Neyra, E., Videla, F., Ciappina, M. F., Pérez-Hernández, J. A., Roso, L., Lewenstein, M., & Torchia, G. A. (2018). High-order harmonic generation driven by inhomogeneous plasmonics fields spatially bounded: influence on the cut-off law. Journal of Optics, 20(3), 034002. https://doi.org/10.1088/2040-8986/aaa6f7
Neyra, E., Videla, F., Ciappina, M. F., Pérez-Hernández, J. A., Roso, L., & Torchia, G. A. (2018). Synthesis of ultrashort laser pulses for high-order harmonic generation. Physical Review A, 98(1), 013403. https://doi.org/10.1103/PhysRevA.98.013403
Nie, W., Romero, C., Lu, Q., Vázquez De Aldana, J. R., & Chen, F. (2018). Implementation of nearly single-mode second harmonic generation by using a femtosecond laser written waveguiding structure in KTiOPO4 nonlinear crystal. Optical Materials, 84, 531–535. https://doi.org/10.1016/j.optmat.2018.07.057
Pedrinazzi, P., Caridad, J. M., Mackenzie, D. M. A., Pizzocchero, F., Gammelgaard, L., Jessen, B. S., Sordan, R., Booth, T. J., & Bøggild, P. (2018). High-quality graphene flakes exfoliated on a flat hydrophobic polymer. Applied Physics Letters, 112(3), 033101. https://doi.org/10.1063/1.5009168
Picón, A., Bostedt, C., Hernández-García, C., & Plaja, L. (2018). Auger-induced charge migration. Physical Review A, 98(4), 043433. https://doi.org/10.1103/PhysRevA.98.043433
Ren, Y., Zhang, L., Xing, H., Romero, C., Vázquez De Aldana, J. R., & Chen, F. (2018). Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal. Optics & Laser Technology, 103, 82–88. https://doi.org/10.1016/j.optlastec.2018.01.021
Ren, Y., Zhang, L., Romero, C., Vázquez De Aldana, J. R., & Chen, F. (2018). Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting. Applied Surface Science, 441, 372–380. https://doi.org/10.1016/j.apsusc.2018.01.217
Rodríguez-Beltrán, R. I., Hernandez, M., Paszkiewicz, S., Szymczyk, A., Rosłaniec, Z., Ezquerra, T. A., Castillejo, M., Moreno, P., & Rebollar, E. (2018). Laser induced periodic surface structures formation by nanosecond laser irradiation of poly (ethylene terephthalate) reinforced with Expanded Graphite. Applied Surface Science, 436, 1193–1199. https://doi.org/10.1016/j.apsusc.2017.12.147
Roger, T., Pancin, J., Grinyer, G. F., Mauss, B., Laffoley, A. T., Rosier, P., Alvarez-Pol, H., Babo, M., Blank, B., Caamaño, M., Ceruti, S., Daemen, J., Damoy, S., Duclos, B., Fernández-Domínguez, B., Flavigny, F., Giovinazzo, J., Goigoux, T., Henares, J. L., … Yang, J. C. (2018). Demonstrator Detection System for the Active Target and Time Projection Chamber (ACTAR TPC) project. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 895, 126–134. https://doi.org/10.1016/j.nima.2018.04.003
Sánchez-Tejerina, L., Alejos, Ó., Raposo, V., & Martínez, E. (2018). Current-driven domain wall motion along ferromagnetic strips with periodically-modulated perpendicular anisotropy. Journal of Applied Physics, 123(22), 223904. https://doi.org/10.1063/1.5036601
Sánchez-Tejerina, L., Martínez, E., Raposo, V., & Alejos, Ó. (2018). Current-driven domain wall motion based memory devices: Application to a ratchet ferromagnetic strip. AIP Advances, 8(4), 047302. https://doi.org/10.1063/1.4993750
Shahbazi, K., Hrabec, A., Moretti, S., Ward, M. B., Moore, T. A., Jeudy, V., Martinez, E., & Marrows, C. H. (2018). Magnetic properties and field-driven dynamics of chiral domain walls in epitaxial Pt / Co / Au x Pt 1 − x trilayers. Physical Review B, 98(21), 214413. https://doi.org/10.1103/PhysRevB.98.214413
Silva, F., Alonso, B., Holgado, W., Romero, R., Román, J. S., Jarque, E. C., Koop, H., Pervak, V., Crespo, H., & Sola, Í. J. (2018). Strategies for achieving intense single-cycle pulses with in-line post-compression setups. Optics Letters, 43(2), 337. https://doi.org/10.1364/OL.43.000337
Simon, E., Yanes, R., Khmelevskyi, S., Palotás, K., Szunyogh, L., & Nowak, U. (2018). Magnetism and exchange-bias effect at the MnN/Fe interface. Physical Review B, 98(9), 094415. https://doi.org/10.1103/PhysRevB.98.094415
Tarisien, M., Henares, J. L., Baccou, C., Bonnet, T., Boulay, F., Gobet, F., Gugiu, M., Hannachi, F., Kisyov, S., Manailescu, C., Meot, V., Negoita, F., Raymond, X., Revet, G., Tudor, L., & Versteegen, M. (2018). Scintillators in High-Power Laser-Driven Experiments. IEEE Transactions on Nuclear Science, 65(8), 2216–2219. https://doi.org/10.1109/TNS.2018.2821906
Zurrón, Ó., Picón, A., & Plaja, L. (2018). Theory of high-order harmonic generation for gapless graphene. New Journal of Physics, 20(5), 053033. https://doi.org/10.1088/1367-2630/aabec7

attoScientific publications (2018 – 2022)